Skip to main content
Log in

Growth, spectral, thermal and quantum chemical calculation of a nonlinear optical material N-acetyl-L-leucine

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

N-Acetyl-L-Leucine(NAL), a single crystal with dimensions up to 9 × 4 × 2 mm3 was grown. The grown crystal is associated with noncentrosymmetric space group P212121 and crystallizes in orthorhombic crystal system. This grown crystal is characterized by powder XRD analysis. Further, various molecular vibrations in the material was confirmed by FTIR and FT-Raman spectrum. Lower cut off of NAL single crystal was found to be 298 nm. The melting point of the crystalline powder sample of NAL was found to be180°Cand decomposes at 308 °C. In photoluminescence studies the emission of the crystals was observed at 305 nm. SHG efficiency of NAL was around 4.3 times that of KDP, as determined by the Kurtz-Perry powder technique. Quantum chemical calculations of the NAL molecules were performed using the Gaussian 09 software program. The energy value of HOMO–LUMO orbital’s was also investigated using Frontier Molecular Orbital analysis. The molecular nonlinear properties, molecular electrostatic potential map, and Mulliken charge analysis were all performed and discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.  9
Fig. 10

Similar content being viewed by others

Data availability

All data and materials as well as software application or custom code support their published claims and comply with field standards.

Code availability

Not applicable.

References

  1. D.R. Kanis, M.A. Ratner, T.J. Marks, Chem. Rev. 941, 195–242 (1994)

    Article  Google Scholar 

  2. C. Bosshard, K. Sutter, P. Pretre, J. Hulliger, M. Florsheimer, P. Kaatz, P. Gunter, Organic Nonlinear Optical Materials (Gordan and Breach, Switzerland, 1997)

    Google Scholar 

  3. J.C. Calabrese, S.H. Stevenson, Chem Phys. Lett. 154, 93–96 (1989)

    Article  Google Scholar 

  4. H.D. DeWitt, A.W. Ingersoll, J. Am. Chem. Soc. 73, 3359–3360 (1959)

    Article  Google Scholar 

  5. M.J. Frisch et al., Gaussian 03, Revision C.02 (Gaussian Inc, Wallingford CT, 2004)

    Google Scholar 

  6. R.I. Dennington, T. Keith, J. Millam, K. Eppinnett, W. Hovell, Gauss View, Version 3.09 (Semichem Inc, Shawnee Mission, 2003)

    Google Scholar 

  7. K. Waśkowska, K. Łukaszewicz, YuT. Struchkov, Bulletin Polish. Acad. Sci. 23, 149–153 (1975)

    Google Scholar 

  8. A. Makarim Mahdi, S.R. Yousefi, S. Layth Jasim, M. Salavati-Niasari, Int. J. of Hydrog. Energy 47, 14319–14330 (2022)

    Article  Google Scholar 

  9. M. Patrycja, P. Michał, M. Wojciech, J. Phys. Chem. Lett. 9, 6814–6817 (2018)

    Article  Google Scholar 

  10. B.K. Sarojini, B. Narayana, B.V. Ashalatha, J. Indira, K.G. Lobo, J. of Cryst. Growth 295, 54–59 (2006)

    Article  CAS  Google Scholar 

  11. M. Rajalakshmi, T.S. Shyju, R. Indirajith, R. Gopalakrishnan, Spectrochim. Acta. A Mol. Biomol. Spectrosc. 86, 27–32 (2012)

    Article  CAS  Google Scholar 

  12. S.R. Yousefi, H.A. Alshamsi, O. Amiri, M. Salavati-Niasari, J of Mol Liquids 337, 116405 (2021)

    Article  CAS  Google Scholar 

  13. S.P. Ramteke, M.I. Baig, M. Shkir, S. Kalainathan, M.D. Shirsat, G.G. Muley, M. Anis, Opt. Laser Tech. 104, 83–89 (2018)

    Article  CAS  Google Scholar 

  14. R. Shivaraj, P.S. Maidur, S. Patil, S. Venugopal Rao, M. Shkir Mohd, S.M. Dharmaprakash, Opt. Laser Tech. 97, 219–228 (2017)

    Article  Google Scholar 

  15. C. Usha, R. Santhakumari, L. Joseph, D. Sajan, R. Meenakshi, A. Sinthiya, Heliyon 5, e01574 (2019)

    Article  CAS  Google Scholar 

  16. S.R. Yousefi, O. Amiri, M. Salavati-Niasari, Ultrasonics Sonochem. 58, 104619 (2019)

    Article  CAS  Google Scholar 

  17. M. Shkir, M. Anis, S. Shafik, M. Aslam Manthrammel, M.A. Sayeed, S. Hamdy, S.A. Mohammed, Physica E 118, 113955 (2020)

    Article  CAS  Google Scholar 

  18. J. Murray, K. SandSen, Molecular electrostatic potentials concepts and applications (Elsevier, Amsterdam, 1996)

    Google Scholar 

  19. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, M. Hassanpour, J. Mater. Sci: Mater. Electron. 27, 1244–1253 (2016)

    CAS  Google Scholar 

  20. J. Gilman, J of Mat Res Inno. 1, 71–76 (1997)

    Article  CAS  Google Scholar 

  21. T. Abbaz, A. Bendjeddou, D. Villemin, Int. J. of Adv Res. in Sci. Engg. Tech 5, 5150–5161 (2018)

    Google Scholar 

  22. P. Politzer, F. Abu-Awwad, Theo Chem. Acco. 99, 83–87 (1998)

    Article  CAS  Google Scholar 

  23. R.S. Mulliken, J. of Chem. Phy. 2, 782–793 (1934)

    Article  CAS  Google Scholar 

  24. R. Parr, L. Szentpaly, S. Liu, J. Am. Chem. Soc. 121, 1922–1924 (1999)

    Article  CAS  Google Scholar 

  25. V. Balachandran, A. Nataraj, T. Karthick, Spectro. Chimica. Acta. Part A 104, 114–129 (2013)

    Article  CAS  Google Scholar 

  26. S.R. Yousefi, M. Masjedi-Arani, M.S. Morassaei, M. Salavati-Niasari, H. Moayedi, Int. J of Hydrogen Energy 44, 24005–24016 (2019)

    Article  CAS  Google Scholar 

  27. M. Shkir, M. Anis, S.S. Mohd, S. Shaikh, S.A. Hamdy, App. Phy. B 126, 219 (2020)

    Article  Google Scholar 

  28. D.A. Kleinman, Phys Rev. 126, 1977–1979 (1962)

    Article  CAS  Google Scholar 

  29. M.D. Zidan, M. Al-Ktaifani, A. Allahham, Opt. Laser Technol. 70, 45–49 (2015)

    Article  CAS  Google Scholar 

  30. Y.X. Sun, Q.L. Hao, W.X. Wei, Z.X. Yu, L.D. Lu, X. Wang, Y.S. Wang, J. of Mol. Stru. 904, 74–82 (2009)

    Article  CAS  Google Scholar 

  31. S.R. Yousefi, A. Sobhani, M. Salavati-Niasari, Adv. Powder Tech. 28, 1258–1262 (2017)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

CD: The growth of crystal, characterization, and DFT studies for N-Acetyl- L-Leucine. MA: The designing and planning and guidance during research. BA: Spectroscopic interpretation.

Corresponding author

Correspondence to M. Anbuchezhiyan.

Ethics declarations

Conflict of interest

Regarding this work, conflict is none; all co-authors have checked the manuscript and have agreed to the submission.

Ethical approval

All co-authors ensure that accepted principles of ethical and professional conduct have been followed.

Consent to participate

Not Applicable.

Consent for publication

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepa, C., Anbuchezhiyan, M. & Anusha, B. Growth, spectral, thermal and quantum chemical calculation of a nonlinear optical material N-acetyl-L-leucine. J Mater Sci: Mater Electron 34, 1190 (2023). https://doi.org/10.1007/s10854-023-10554-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10554-z

Navigation