Skip to main content

Advertisement

Log in

Zn-doped SnO2 nanoparticles for ethanol vapor sensor: a combined experimental and first-principles study

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zn-doped SnO2 nanoparticles were synthesized by hydrothermal method, the morphological features were revealed by SEM and TEM, the chemical component and valence state were investigated by XRD and XPS. The gas-sensitive performance of Zn-doped SnO2 nanoparticles was tested, and the results showed that the doping of Zn elements could improve the gas-sensitive performance of the sensor, especially the 4wt% Zn-doped SnO2 exhibited higher sensitivity, lower operating temperature, and greater stability. The adsorption energy, energy band structure and density of states of ethanol molecules on pristine SnO2 and Zn-doped SnO2 crystal face were calculated through density functional theory (DFT) to explore the possibility that the improved sensing performance of Zn-doped SnO2 nanoparticles could be attributed to the generation of Schottky junctions and the reduction of adsorption energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the fundings of this study are available from the corresponding author upon reasonable request.

References

  1. Q. Li, D. Chen, J. Miao, S. Lin, Z. Yu, D. Cui, Z. Yang, X. Chen, Highly sensitive sensor based on ordered porous ZnO nanosheets for ethanol detecting application. Sens. Actuators B Chem. 326, 128952 (2021). https://doi.org/10.1016/j.snb.2020.128952

    Article  CAS  Google Scholar 

  2. C. Grander, T.E. Adolph, V. Wieser, P. Lowe, L. Wrzosek, B. Gyongyosi, D.V. Ward, F. Grabherr, R.R. Gerner, A. Pfister, B. Enrich, D. Ciocan, S. Macheiner, L. Mayr, M. Drach, P. Moser, A.R. Moschen, G. Perlemuter, G. Szabo, A.M. Cassard, H. Tilg, Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease. Gut 67, 892 (2018). https://doi.org/10.1136/gutjnl-2016-313432

    Article  CAS  Google Scholar 

  3. J. Sun, Y. Wang, Recent advances in catalytic conversion of ethanol to chemicals. Acs Catal. 4, 1078–1090 (2014). https://doi.org/10.1021/cs4011343

    Article  CAS  Google Scholar 

  4. F. Liu, C. Ma, D.J. McClements, Y. Gao, A comparative study of covalent and non-covalent interactions between zein and polyphenols in ethanol-water solution. Food Hydrocoll. 63, 625–634 (2017). https://doi.org/10.1016/j.foodhyd.2016.09.041

    Article  CAS  Google Scholar 

  5. A. Gupta, J.P. Verma, Sustainable bio-ethanol production from agro-residues: a review. Renew. Sustain. Energy Rev. 41, 550–567 (2015). https://doi.org/10.1016/j.rser.2014.08.032

    Article  CAS  Google Scholar 

  6. Y. He, B. Sun, L. Jiang, X. Li, Y. Ma, K. Wang, P. Han, S. Jin, Effect of Ag doping on SnO2 sensing for detecting H2S: A first-principles study. Vacuum 194, 110587 (2021). https://doi.org/10.1016/j.vacuum.2021.110587

    Article  CAS  Google Scholar 

  7. V. Perumal, C. Inmozhi, R. Uthrakumar, R. Robert, M. Chandrasekar, S.B. Mohamed, S. Honey, A. Raja, F.A. Al-Mekhlafi, K. Kaviyarasu, Enhancing the photocatalytic performance of surface - Treated SnO2 hierarchical nanorods against methylene blue dye under solar irradiation and biological degradation. Environ. Res. 209, 112821 (2022). https://doi.org/10.1016/j.envres.2022.112821

    Article  CAS  Google Scholar 

  8. H. Li, P. Xu, D. Liu, J. He, H. Zu, J. Song, J. Zhang, F. Tian, M. Yun, F. Wang, Low-voltage and fast-response SnO2 nanotubes/perovskite heterostructure photodetector. Nanotechnology. 32, 375202 (2021). https://doi.org/10.1088/1361-6528/ac05e7

    Article  CAS  Google Scholar 

  9. M. Zhan, C. Ge, S. Hussain, A.S. Alkorbi, R. Alsaiari, N.A. Alhemiary, G. Qiao, G. Liu, Enhanced NO2 gas-sensing performance by core-shell SnO2/ZIF-8 nanospheres. Chemosphere 291, 132842 (2022). https://doi.org/10.1016/j.chemosphere.2021.132842

    Article  CAS  Google Scholar 

  10. X. Gao, T. Zhang, An overview: facet-dependent metal oxide semiconductor gas sensors. Sens. Actuators B-Chem. 277, 604–633 (2018). https://doi.org/10.1016/j.snb.2018.08.129

    Article  CAS  Google Scholar 

  11. D.R. Miller, S.A. Akbar, P.A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens. Actuators B-Chem. 204, 250–272 (2014). https://doi.org/10.1016/j.snb.2014.07.074

    Article  CAS  Google Scholar 

  12. H. Chen, Y. Zhao, L. Shi, G.-D. Li, L. Sun, X. Zou, Revealing the relationship between energy level and gas sensing performance in heteroatom-doped semiconducting nanostructures. Acs Appl. Mater. Interfaces. 10, 29795–29804 (2018). https://doi.org/10.1021/acsami.8b10057

    Article  CAS  Google Scholar 

  13. S.-H. Wang, S.-J. Chang, S. Liu, T.-Y. Tsai, C.-L. Hsu, Synthesis of In2O3 nanowires and their gas sensing properties. Ieee Sens. J. 16, 5850–5855 (2016). https://doi.org/10.1109/JSEN.2016.2577023

    Article  CAS  Google Scholar 

  14. W. Tan, Q. Yu, X. Ruan, X. Huang, Design of SnO2-based highly sensitive ethanol gas sensor based on quasi molecular-cluster imprinting mechanism. Sens. Actuators B-Chem. 212, 47–54 (2015). https://doi.org/10.1016/j.snb.2015.01.035

    Article  CAS  Google Scholar 

  15. L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, S. Wang, ZnO nanorod gas sensor for ethanol detection. Sens. Actuators B-Chem. 162, 237–243 (2012). https://doi.org/10.1016/j.snb.2011.12.073

    Article  CAS  Google Scholar 

  16. A.V. Raghu, K.K. Karuppanan, B. Pullithadathil, Controlled Carbon doping in anatase TiO2 (101) Facets: superior trace-level ethanol gas sensor performance and adsorption kinetics. Adv. Mater. Interfaces. 6, 1801714 (2019). https://doi.org/10.1002/admi.201801714

    Article  CAS  Google Scholar 

  17. H.-L. Yu, J. Wang, B. Zheng, B.-W. Zhang, L.-Q. Liu, Y.-W. Zhou, C. Zhang, X.-L. Xue, Fabrication of single crystalline WO3 nano-belts based photoelectric gas sensor for detection of high concentration ethanol gas at room temperature. Sens. Actuators -Phys. 303, 111865 (2020). https://doi.org/10.1016/j.sna.2020.111865

    Article  CAS  Google Scholar 

  18. C. Su, L. Zhang, Y. Han, C. Ren, X. Chen, J. Hu, M. Zeng, N. Hu, Y. Su, Z. Zhou, Z. Yang, Controllable synthesis of crescent-shaped porous NiO nanoplates for conductometric ethanol gas sensors. Sens. Actuators B-Chem. 296, 126642 (2019). https://doi.org/10.1016/j.snb.2019.126642

    Article  CAS  Google Scholar 

  19. S. Yan, X. Liang, H. Song, S. Ma, Y. Lu, Synthesis of porous CeO2-SnO2 nanosheets gas sensors with enhanced sensitivity. Ceram. Int. 44, 358–363 (2018). https://doi.org/10.1016/j.ceramint.2017.09.181

    Article  CAS  Google Scholar 

  20. N.L. Myadam, D.Y. Nadargi, J.D. Nadargi, M.G. Chaskar, Cu/SnO2 xerogels: a novel epoxide derived nanomaterial as formaldehyde gas sensor. J. Sol-Gel Sci. Technol. 96, 56–66 (2020). https://doi.org/10.1007/s10971-020-05377-x

    Article  CAS  Google Scholar 

  21. X. Kou, F. Meng, K. Chen, T. Wang, P. Sun, F. Liu, X. Yan, Y. Sun, F. Liu, K. Shimanoe, G. Lu, High-performance acetone gas sensor based on Ru-doped SnO2 nanofibers. Sens. Actuators B-Chem. 320, 128292 (2020). https://doi.org/10.1016/j.snb.2020.128292

    Article  CAS  Google Scholar 

  22. Q. Wang, L. Bao, Z. Cao, C. Li, X. Li, F. Liu, P. Sun, G. Lu, Microwave-assisted hydrothermal synthesis of Pt/SnO2 gas sensor for CO detection. Chin. Chem. Lett. 31, 2029–2032 (2020). https://doi.org/10.1016/j.cclet.2019.12.007

    Article  CAS  Google Scholar 

  23. B. Yang, Z. Zhang, C. Tian, W. Yuan, Z. Hua, S. Fan, Y. Wu, X. Tian, Selective detection of methane by HZSM-5 zeolite/Pd-SnO2 gas sensors. Sens. Actuators B-Chem. 321, 128567 (2020). https://doi.org/10.1016/j.snb.2020.128567

    Article  CAS  Google Scholar 

  24. L. Wang, Y. Wang, K. Yu, S. Wang, Y. Zhang, C. Wei, A novel low temperature gas sensor based on Pt-decorated hierarchical 3D SnO2 nanocomposites. Sens. Actuators B-Chem. 232, 91–101 (2016). https://doi.org/10.1016/j.snb.2016.02.135

    Article  CAS  Google Scholar 

  25. Y. Feng, C. Bai, K. Wu, H. Dong, J. Ke, X. Huang, D. Xiong, M. He, Fluorine-doped porous SnO2@C nanosheets as a high performance anode material for lithium ion batteries. J. Alloys Compd. 843, 156085 (2020). https://doi.org/10.1016/j.jallcom.2020.156085

    Article  CAS  Google Scholar 

  26. K.-R. Park, H.-B. Cho, J. Lee, Y. Song, W.-B. Kim, Y.-H. Choa, Design of highly porous SnO2-CuO nanotubes for enhancing H2S gas sensor performance. Sens. Actuators B-Chem. 302, 127179 (2020). https://doi.org/10.1016/j.snb.2019.127179

    Article  CAS  Google Scholar 

  27. R. Zhang, S.Y. Ma, Q.X. Zhang, K.M. Zhu, Y. Tie, S.T. Pei, B.J. Wang, J.L. Zhang, Highly sensitive formaldehyde gas sensors based on Ag doped Zn2SnO4/SnO2 hollow nanospheres. Mater. Lett. 254, 178–181 (2019). https://doi.org/10.1016/j.matlet.2019.07.065

    Article  CAS  Google Scholar 

  28. J. Zhang, S. Ma, B. Wang, S. Pei, Hydrothermal synthesis of SnO2-CuO composite nanoparticles as a fast-response ethanol gas sensor. J. Alloys Compd. 886, 161299 (2021). https://doi.org/10.1016/j.jallcom.2021.161299

    Article  CAS  Google Scholar 

  29. Y. Wang, H. Li, D. Huang, X. Wang, L. Cai, Y. Chen, W. Wang, Y. Song, G. Han, B. Zhen, A high-performance ethanol gas sensor based on Ce-doped SnO2 nanomaterials prepared by the Pechini method. Mater. Sci. Semicond. Process. 137, 106188 (2022). https://doi.org/10.1016/j.mssp.2021.106188

    Article  CAS  Google Scholar 

  30. X. Yang, H. Li, T. Li, Z. Li, W. Wu, C. Zhou, P. Sun, F. Liu, X. Yan, Y. Gao, X. Liang, G. Lu, Highly efficient ethanol gas sensor based on hierarchical SnO2/Zn2SnO4 porous spheres. Sens. Actuators B-Chem. 282, 339–346 (2019). https://doi.org/10.1016/j.snb.2018.11.070

    Article  CAS  Google Scholar 

  31. N. Tammanoon, A. Wisitsoraat, A. Tuantranont, C. Liewhiran, Flame-made Zn-substituted SnO2 nanoparticulate compound for ultra-sensitive formic acid gas sensing. J. Alloys Compd. 871, 159547 (2021). https://doi.org/10.1016/j.jallcom.2021.159547

    Article  CAS  Google Scholar 

  32. X. Song, F. Zhao, Z. Wang, R. Ge, J. Xing, Hollow ZnO@SnO2-Pt Core-Shell nanofibers for ethanol sensing. Acs Appl. Nano Mater. 5, 6637–6649 (2022). https://doi.org/10.1021/acsanm.2c00686

    Article  CAS  Google Scholar 

  33. Q. Zhou, W. Chen, L. Xu, R. Kumar, Y. Gui, Z. Zhao, C. Tang, S. Zhu, Highly sensitive carbon monoxide (CO) gas sensors based on Ni and Zn doped SnO2 nanomaterials. Ceram. Int. 44, 4392–4399 (2018). https://doi.org/10.1016/j.ceramint.2017.12.038

    Article  CAS  Google Scholar 

  34. S. Bhattacharjee, S. Sen, S. Kundu, Development of La-impregnated TiO2 based ethanol sensors for next generation automobile application. J. Mater. Sci.-Mater. Electron. 33, 15296–15312 (2022). https://doi.org/10.1007/s10854-022-08394-4

    Article  CAS  Google Scholar 

  35. V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Mater. Charact. 85, 111–123 (2013). https://doi.org/10.1016/j.matchar.2013.09.002

    Article  CAS  Google Scholar 

  36. W. Wang, Y. Tian, X. Li, X. Wang, H. He, Y. Xu, C. He, Enhanced ethanol sensing properties of Zn-doped SnO2 porous hollow microspheres. Appl. Surf. Sci. 261, 890–895 (2012). https://doi.org/10.1016/j.apsusc.2012.08.118

    Article  CAS  Google Scholar 

  37. C. Lu, J. Wang, F. Xu, A. Wang, D. Meng, Zn-doped SnO2 hierarchical structures formed by a hydrothermal route with remarkably enhanced photocatalytic performance. Ceram. Int. 44, 15145–15152 (2018). https://doi.org/10.1016/j.ceramint.2018.05.151

    Article  CAS  Google Scholar 

  38. P. Sun, L. You, Y. Sun, N. Chen, X. Li, H. Sun, J. Ma, G. Lu, Novel Zn-doped SnO2 hierarchical architectures: synthesis, characterization, and gas sensing properties. CrystEngComm 14, 1701–1708 (2012). https://doi.org/10.1039/c1ce06197f

    Article  CAS  Google Scholar 

  39. J. Hu, C. Zou, Y. Su, M. Li, N. Hu, H. Ni, Z. Yang, Y. Zhang, Enhanced NO2 sensing performance of reduced graphene oxide by in situ anchoring carbon dots. J. Mater. Chem. C. 5, 6862–6871 (2017). https://doi.org/10.1039/C7TC01208J

    Article  CAS  Google Scholar 

  40. D. Xue, P. Wang, Z. Zhang, Y. Wang, Enhanced methane sensing property of flower-like SnO2 doped by Pt nanoparticles: a combined experimental and first-principle study. Sens. Actuators B-Chem. 296, 126710 (2019). https://doi.org/10.1016/j.snb.2019.126710

    Article  CAS  Google Scholar 

  41. R. Li, Z. Yuan, F. Meng, T. Jiao, G. Li, The investigation and DFT calculation on the gas sensing properties of nanostructured SnO2. Microelectron. Eng. 236, 111469 (2021). https://doi.org/10.1016/j.mee.2020.111469

    Article  CAS  Google Scholar 

  42. R. Li, S. Chen, Z. Lou, L. Li, T. Huang, Y. Song, D. Chen, G. Shen, Fabrication of porous SnO2 nanowires gas sensors with enhanced sensitivity. Sens. Actuators B-Chem. 252, 79–85 (2017). https://doi.org/10.1016/j.snb.2017.05.161

    Article  CAS  Google Scholar 

  43. S. Zhao, Y. Shen, F. Hao, C. Kang, B. Cui, D. Wei, F. Meng, P-n junctions based on CuO-decorated ZnO nanowires for ethanol sensing application. Appl. Surf. Sci. 538, 148140 (2021). https://doi.org/10.1016/j.apsusc.2020.148140

    Article  CAS  Google Scholar 

  44. H. Mei, S. Zhou, M. Lu, L. Cheng, Tetrapod-like ZnO/ZnFe2O4 based heterostructure for enhanced ethanol detection. J. Alloys Compd. 840, 155583 (2020). https://doi.org/10.1016/j.jallcom.2020.155583

    Article  CAS  Google Scholar 

  45. H.-J. Kim, K.-I. Choi, K.-M. Kim, C.W. Na, J.-H. Lee, Highly sensitive C2H5OH sensors using Fe-doped NiO hollow spheres. Sens. Actuators B Chem. 171–172, 1029–1037 (2012). https://doi.org/10.1016/j.snb.2012.06.029

    Article  CAS  Google Scholar 

  46. J. Zhang, T. Li, J. Guo, Y. Hu, D. Zhang, Two-step hydrothermal fabrication of CeO2-loaded MoS2 nanoflowers for ethanol gas sensing application. Appl. Surf. Sci. 568, 150942 (2021)

    Article  CAS  Google Scholar 

  47. W. Pan, Y. Zhang, D. Zhang, Self-assembly fabrication of titanium dioxide nanospheres-decorated tungsten diselenide hexagonal nanosheets for ethanol gas sensing application. Appl. Surf. Sci. 527, 146781 (2020l)

    Article  CAS  Google Scholar 

  48. D. Zhang, Y. Cao, J. Wu, X. Zhang, Tungsten trioxide nanoparticles decorated tungsten disulfide nanoheterojunction for highly sensitive ethanol gas sensing application. Appl. Surf. Sci. 503, 144063 (2020)

    Article  CAS  Google Scholar 

  49. G. Singh, N. Kohli, R.C. Singh, Sensitive and selective ethanol sensor based on Zn-doped SnO2 nanostructures. J. Mater. Sci.-Mater. Electron. 28, 13013–13023 (2017). https://doi.org/10.1007/s10854-017-7133-x

    Article  CAS  Google Scholar 

  50. G. Singh, R.C. Virpal, Singh, Highly sensitive gas sensor based on Er-doped SnO2 nanostructures and its temperature dependent selectivity towards hydrogen and ethanol. Sens. Actuators B-Chem. 282, 373–383 (2019). https://doi.org/10.1016/j.snb.2018.11.086

    Article  CAS  Google Scholar 

  51. C. Lou, C. Yang, W. Zheng, X. Liu, J. Zhang, Atomic layer deposition of ZnO on SnO2 nanospheres for enhanced formaldehyde detection. Sens. Actuators B-Chem. 329, 129218 (2021). https://doi.org/10.1016/j.snb.2020.129218

    Article  CAS  Google Scholar 

  52. L. Wang, S. Ma, J. Li, A. Wu, D. Luo, T. Yang, P. Cao, N. Ma, Y. Cai, Mo-doped SnO2 nanotubes sensor with abundant oxygen vacancies for ethanol detection. Sens. Actuators B-Chem. 347, 130642 (2021). https://doi.org/10.1016/j.snb.2021.130642

    Article  CAS  Google Scholar 

  53. Y. Chen, H. Qin, Y. Cao, H. Zhang, J. Hu, acetone sensing properties and mechanism of SnO2 thick-films. Sensors. 18, 3425 (2018). https://doi.org/10.3390/s18103425

    Article  CAS  Google Scholar 

  54. M. Tang, D. Zhang, D. Wang, J. Deng, D. Kong, H. Zhang, Performance prediction of 2D vertically stacked MoS2-WS2 heterostructures base on first-principles theory and Pearson correlation coefficient. Appl. Surf. Sci. 596, 153498 (2022). https://doi.org/10.1016/j.apsusc.2022.153498

    Article  CAS  Google Scholar 

  55. L. Zhou, Z. Hu, P. Wang, N. Gao, B. Zhai, M. Ouyang, G. Zhang, B. Chen, J. Luo, S. Jiang, H.-Y. Li, H. Liu, Enhanced NO2 sensitivity of SnO2 SAW gas sensors by facet engineering. Sens. Actuators B-Chem. 361, 131735 (2022). https://doi.org/10.1016/j.snb.2022.131735

    Article  CAS  Google Scholar 

  56. J. Dong, T. Shao, F. Zhang, First-principle study of CO sensing properties on Pt-doped SnO2(110) surface with oxygen defect. Chem. Phys. 565, 111739 (2023). https://doi.org/10.1016/j.chemphys.2022.111739

    Article  CAS  Google Scholar 

  57. X. Wang, H. Qin, Y. Chen, J. Hu, Sensing mechanism of SnO2 (110) surface to CO: density functional theory calculations. J. Phys. Chem. C 118, 28548–28561 (2014). https://doi.org/10.1021/jp501880r

    Article  CAS  Google Scholar 

  58. R. Chen, L. Yan, L. Lin, C. Deng, Z. Zhang, Coadsorption of CO and CH4 on the Au doped SnO2 (110) surface: a first principles investigation. Phys. Scr. 97, 045403 (2022). https://doi.org/10.1088/1402-4896/ac57e1

    Article  Google Scholar 

  59. M. Viitala, O. Cramariuc, B. Delley, T.T. Rantala, Conformation and energetics of benzene adsorbate on SnO2(110) surfaces: A first principles study. Surf. Sci. 605, 1563–1567 (2011). https://doi.org/10.1016/j.susc.2011.05.029

    Article  CAS  Google Scholar 

  60. Y. Gao, Q. Hou, Q. Liu, First-principle study on the magnetic and optical properties of SnO2 doped with Fe2+/3+ and oxygen vacancies at different ratios. Chem. Phys. 542, 111072 (2021). https://doi.org/10.1016/j.chemphys.2020.111072

    Article  CAS  Google Scholar 

  61. Y. Zhang, J. Liu, Z. Wei, Q. Liu, C. Wang, J. Ma, Electrochemical CO2 reduction over nitrogen-doped SnO2 crystal surfaces. J. Energy Chem. 33, 22–30 (2019). https://doi.org/10.1016/j.jechem.2018.08.017

    Article  Google Scholar 

  62. G.S.L. Fabris, D.H.M. Azevedo, A.C. Alves, C.A. Paskocimas, J.R. Sambrano, J.M.M. Cordeiro, DFT studies on PbO2 and binary PbO2/SnO2 thin films. Phys. E-Low-Dimens. Syst. Nanostructures. 136, 115037 (2022). https://doi.org/10.1016/j.physe.2021.115037

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (62173213), Natural Science Foundation of Shandong Province (ZR2019MF069), Yantai Key R&D Program (2020LJRC119), PhD Start-up Fund of Shandong Technology and Business University (BS201810, BS201811) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

ML: conceptualization, investigation, formal analysis, visualization, writing-review & editing. CM: investigation, formal analysis, experimental validation, data analysis, writing-original draft. YZ: conceptualization, investigation, experimental validation, writing – review & editing. XL: experimental validation. HZ: software. Guangfen W: project administration, supervision, funding acquisition, resources.

Corresponding author

Correspondence to Meihua Li.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Research involving human and animal participants

There are no potential conflicts of interest and no studies involving human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Mou, C., Zhang, Y. et al. Zn-doped SnO2 nanoparticles for ethanol vapor sensor: a combined experimental and first-principles study. J Mater Sci: Mater Electron 34, 1059 (2023). https://doi.org/10.1007/s10854-023-10502-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10502-x

Navigation