Skip to main content

Advertisement

Log in

Hybrid WO3-nanorods/TiO2 photoanodes for improved dye-sensitized solar cells performances under back illumination

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Anatase TiO2 photoanodes were modified by hydrothermally synthesized WO3 nanorods for dye-sensitized solar cell (DSSC) applications. Two different configurations were investigated differing in the location of WO3 nanorods: (i) A thin undercoat of WO3 nanorods was produced on the FTO substrate, under a layer of commercial TiO2, (ii) 0.5 wt% of WO3 nanorods were introduced into a commercial TiO2 paste. FE-SEM images confirmed the nanorod shape of the particles and the orthorhombic structure of WO3 was verified by XRD analysis. Photoelectrochemical impedance spectroscopy under UV-C light irradiation revealed an increase in charge transfer resistance with the addition of WO3 nanorods for both configurations. For front illumination, the photovoltaic results showed that despite the screen effect of WO3 nanorods layer which negatively impacted the Voc, cells with WO3 nanorods undercoat showed better performance than cells with WO3 nanorods introduced in the TiO2 matrix, the latter suffered from reduced dye loading and light harvesting ability. Conversely in the case of back illumination, the introduced undercoat of WO3 nanorods had a positive effect on the performance of the cell, with an increase in both Voc and Jsc. The excellent electron mobility and specific nanorod shape of WO3 contributed to charge trapping and injection into the conductive substrate, thereby reducing recombination and dark current. In addition, the scattering nature of the WO3 nanorods undercoat was beneficial for light harvesting in the photoanode in the case of back illumination. Such a result opens the way to potential indoor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated and analyzed during the current study are included in this published article.

References

  1. J.-M. Ji, H. Zhou, Y.K. Eom, C.H. Kim, H.K. Kim, 14.2% efficiency dye-sensitized solar cells by co-sensitizing Novel Thieno[3,2-b]indole-based organic dyes with a promising porphyrin sensitizer. Adv. Energy Mater. 10, 2000124 (2020). https://doi.org/10.1002/aenm.202000124

    Article  CAS  Google Scholar 

  2. R. Biswas, S. Chatterjee, Effect of surface modification via sol-gel spin coating of ZnO nanoparticles on the performance of WO3 photoanode based dye sensitized solar cells. Optik 212, 164142 (2020). https://doi.org/10.1016/j.ijleo.2019.164142

    Article  CAS  Google Scholar 

  3. W.-Y. Rho, H. Jeon, H.-S. Kim, W.-J. Chung, J.S. Suh, B.-H. Jun, Recent progress in dye-sensitized solar cells for improving efficiency: TiO2 nanotube arrays in active layer. J. Nanomater. 2015, 2476 (2015). https://doi.org/10.1155/2015/247689

    Article  CAS  Google Scholar 

  4. S.-M. Yong, T. Nikolay, B.T. Ahn, D.K. Kim, One-dimensional WO3 nanorods as photoelectrodes for dye-sensitized solar cells. J. Alloys Compd. 547, 113–117 (2013). https://doi.org/10.1016/j.jallcom.2012.08.124

    Article  CAS  Google Scholar 

  5. Y. Kong, S. Honggang, W. Fan, L. Wang, Z. Hongkai, X. Zhao, S. Yuan, Enhanced photoelectrochemical performance of tungsten oxide film by bifunctional Au nanoparticles. RSC Adv. 7, 15201–15210 (2017). https://doi.org/10.1039/C7RA01426K

    Article  CAS  Google Scholar 

  6. S.S. Kalanur, Y.J. Hwang, S.Y. Chae, O.S. Joo, Facile growth of aligned WO3 nanorods on FTO substrate for enhanced photoanodic water oxidation activity. J. Mater. Chem. A 1, 3479–3488 (2013). https://doi.org/10.1039/C3TA01175E

    Article  CAS  Google Scholar 

  7. M.M. Momeni, M. Akbarnia, Y. Ghayeb, Preparation of S-W-codoped TiO2 nanotubes and effect of various hole scavengers on their photoelectrochemical activity: Alcohol series. Int. J. Hydrog. Energy 45, 33552–33562 (2020). https://doi.org/10.1016/j.ijhydene.2020.09.112

    Article  CAS  Google Scholar 

  8. S. Chen, Y. Xiao, W. Xie, Y. Wang, Z. Hu, W. Zhang, H. Zhao, Facile strategy for synthesizing non-stoichiometric monoclinic structured tungsten trioxide (WO3−x) with plasma resonance absorption and enhanced photocatalytic activity. Nanomaterials 8, 553 (2018). https://doi.org/10.3390/nano8070553

    Article  CAS  Google Scholar 

  9. H. Kim, S. Karuppanan, K. Yong, Photoelectrochemical and photocatalytic properties of tungsten oxide nanorods grown by thermal evaporation. Mater. Chem. Phys. 120, 452–455 (2010). https://doi.org/10.1016/j.matchemphys.2009.11.042

    Article  CAS  Google Scholar 

  10. X. Hou, K. Aitola, P.D. Lund, TiO2 nanotubes for dye-sensitized solar cells-a review. Energy Sci. Eng. 9, 921–937 (2021). https://doi.org/10.1002/ese3.831

    Article  CAS  Google Scholar 

  11. N.H. Hieu, L.K. Hung, L.T.T. Nghia, N.D. Viet, N.T. Hoang, M. Thanh Phong, Synthesis of titanium dioxide nanorods combining with titanium dioxide nanoparticles/reduced graphene oxide nanocomposite for fabrication of photoanodes in dye–sensitized solar cells. Mater. Technol. 37, 2541–2551 (2022). https://doi.org/10.1080/10667857.2022.2046927

    Article  CAS  Google Scholar 

  12. Q. Bi, Y. Gao, C. Dang, Z. Wang, J. Xue, Study on the photoelectrocatalytic performance of a WO3 thin film electrode by constructing a BiOI/WO3 heterojunction. CrystEngComm 21, 6744–6757 (2019). https://doi.org/10.1039/C9CE01183H

    Article  CAS  Google Scholar 

  13. R. Levinas, N. Tsyntsaru, T. Murauskas, H. Cesiulis, Improved photocatalytic water splitting activity of highly porous WO3 photoanodes by electrochemical H+ intercalation. Front. Chem. Eng. (2021). https://doi.org/10.3389/fceng.2021.760700

    Article  Google Scholar 

  14. H.H. Vu, Y.-H. Hwang, H.-K. Kim, The effects of WO3 nanoparticles addition to the TiO2 photoelectrode in dye-sensitized solar cells. Curr. Photovolt. Res. 4, 42–47 (2016). https://doi.org/10.21218/CPR.2016.4.2.042

    Article  Google Scholar 

  15. O. Prakash, V. Saxena, S. Choudhury, A. Tanvi, A.K. Singh, A. Debnath, K.P. Mahajan, D.K.A. Muthe, Low temperature processable ultra-thin WO3 Langmuir-Blodgett film as excellent hole blocking layer for enhanced performance in dye sensitized solar cell. Electrochimica Acta 318, 405–412 (2019). https://doi.org/10.1016/j.electacta.2019.06.047

    Article  CAS  Google Scholar 

  16. K. Wang, Y. Shi, Q. Dong, Y. Li, S. Wang, X. Yu, M. Wu, T. Ma, Low Temperature and Solution Processed Amorphous WOX as electron selective layer for perovskite solar cells. J. Phys. Chem. Lett. 6, 755–759 (2015). https://doi.org/10.1021/acs.jpclett.5b00010

    Article  CAS  Google Scholar 

  17. N.M. Makwana, R. Quesada-Cabrera, I.P. Parkin, P.F. McMillan, A. Mills, J.A. Darr, A simple and low-cost method for the preparation of self-supported TiO2-WO3 ceramic heterojunction wafers. J. Mater. Chem. A 2, 17602–17608 (2014). https://doi.org/10.1039/C4TA03257H

    Article  CAS  Google Scholar 

  18. M. Yan, Q.-H. Wang, Y.-Z. Zhu, M.-L. Han, Y.-Q. Yan, J.-Y. Zheng, Effect of triptycene unit on the performance of porphyrin-based dye-sensitized solar cells. J. Photochem. Photobiol. A 416, 113325 (2021). https://doi.org/10.1016/j.jphotochem.2021.113325

    Article  CAS  Google Scholar 

  19. P. Cheng, C. Deng, X. Dai, B. Li, D. Liu, J. Xu, Enhanced energy conversion efficiency of TiO2 electrode modified with WO3 in dye-sensitized solar cells. J. Photochem. Photobiol. A 195, 144–150 (2008). https://doi.org/10.1016/j.jphotochem.2007.09.016

    Article  CAS  Google Scholar 

  20. T. Eom, K.H. Kim, C.W. Bark, H. Choi, (2014) Efficiency improvement of dye-sensitized solar cells using WO3. Mol. Cryst. Liq. Cryst. (2014). https://doi.org/10.1080/15421406.944675

    Article  Google Scholar 

  21. M. Ismail, M.M. Chebaane, L. Bousselmi, O. Zahraa, C. Olivier, T. Toupance, Photoelectrochemical properties of WO3-modified anatase TiO2 photoanodes and application for dye-sensitized solar cells. Surf. Interfaces 27, 101543 (2021). https://doi.org/10.1016/j.surfin.2021.101543

    Article  CAS  Google Scholar 

  22. T.-S. Kang, S.-H. Moon, K.-J. Kim, Enhanced photocurrent-voltage characteristics of Ru(II)-dye sensitized TiO2 solar cells with TiO2-WO3 buffer layers prepared by a sol-gel method. J. Electrochem. Soc. (2002). https://doi.org/10.1149/1.1467367

    Article  Google Scholar 

  23. P.P. González-Borrero, F. Sato, A.N. Medina, M.L. Baesso, A.C. Bento, G. Baldissera, C. Persson, G.A. Niklasson, C.G. Granqvist, A. da Ferreira Silva, Optical band-gap determination of nanostructured WO3 film. Appl. Phys. Lett. 96, 0619091–0619093 (2010). https://doi.org/10.1063/1.3313945

    Article  CAS  Google Scholar 

  24. M.A. Henderson, A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 66, 185–297 (2011). https://doi.org/10.1016/j.surfrep.2011.01.001

    Article  CAS  Google Scholar 

  25. J. Coronado, F. Fresno, M. Hernández-Alonso, R. Portela, S. Suárez, S. García Rodríguez, V. de la Peña O’Shea, Design of advanced photocatalytic materials for energy and environmental applications (Springer, London, 2013), pp.1–348. https://doi.org/10.1007/978-1-4471-5061-9_5

    Book  Google Scholar 

  26. S. Higashimoto, M. Sakiyama, M. Azuma, Photoelectrochemical properties of hybrid WO3/TiO2 electrode. Effect of structures of WO3 on charge separation behavior. Thin Solid Films 503, 201–206 (2006). https://doi.org/10.1016/j.tsf.2005.11.110

    Article  CAS  Google Scholar 

  27. N.G. Park, J. van de Lagemaat, A.J. Frank, Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells. J. Phys. Chem. B 104, 8989–8994 (2000). https://doi.org/10.1021/jp994365l

    Article  CAS  Google Scholar 

  28. A. Mohamed, Y. Selim, Factors affect dye sensitized solar cells performance. Renew. Energy Sustain. Develop. 3, 83–86 (2017). https://doi.org/10.21622/resd.2017.03.1.083

    Article  Google Scholar 

  29. N.H. Shamsudin, S. Shafie, M.Z.A. Ab Kadir, F. Ahmad, A.R. Sadrolhosseini, Y. Sulaiman, S.A.M. Chachuli, Power conversion efficiency (PCE) performance of back-illuminated DSSCs with different Pt catalyst contents at the optimized TiO2 thickness. Optik 203, 1635 (2020). https://doi.org/10.1016/j.ijleo.2019.163567

    Article  CAS  Google Scholar 

  30. S. Venkatesan, W.H. Lin, H. Teng, Y.L. Lee, High-efficiency bifacial dye-sensitized solar cells for application under indoor light conditions. ACS Appl. Mater. Interfaces 11, 42780–42789 (2019). https://doi.org/10.1021/acsami.9b14876

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by research program of the Tunisian Ministry of Higher Education.

Author information

Authors and Affiliations

Authors

Contributions

MI: material preparation, data collection and analysis, and original draft preparation. CO: assembling of DSScells and photovoltaic characterization. TT: reviewing and supervision.

Corresponding author

Correspondence to Mehdi Ismail.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval and Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, M., Olivier, C. & Toupance, T. Hybrid WO3-nanorods/TiO2 photoanodes for improved dye-sensitized solar cells performances under back illumination. J Mater Sci: Mater Electron 34, 936 (2023). https://doi.org/10.1007/s10854-023-10335-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10335-8

Navigation