Skip to main content

Advertisement

Log in

Green emitting plastic scintillator with neutron/gamma pulse shape discrimination for fast neutron detection

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this report, high concentrations of dye doped advanced plastic scintillators are fabricated by bulk thermal polymerization. High soluble primary fluor 2,5-diphenyloxazole (PPO) having emission wavelength within the UV spectrum and the wavelength shifter 3-hydroxyflavone (3HF) showing emission peak at 530 nm were mixed into the styrene base matrix. The wavelength shifter eliminates the phenomenon of self-absorption, which increases the energy transfer efficiency from the primary dye to the spectral shifter. The structural confirmation was performed by XRD measurement and the surface morphology of the synthesized polystyrene-based plastic scintillators were examined using FESEM. The elemental analysis, purity of the material, chemical states and its compositions were analyzed through EDS, FT-Raman and XPS techniques, respectively. Our studies revealed the good scintillation performance of these novel clear and transparent scintillators for fast neutron detection, showing maximum emission peak around 540 nm with bright green fluorescence, fast scintillation decay under neutron and gamma excitation and good neutron/gamma pulse shape discrimination with a figure of merit of 1.6. The fabricated plastic scintillators possessed an energy linearity of more than 99.8% from the pulse spectra analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availability

This manuscript contains no additional associated data.

References

  1. V.A. Li, T.M. Classen, S.A. Dazeley, M.J. Duvall, I. Jovanovic, A.N. Mabe, E.T. Reedy, F. Sutanto A prototype for SANDD: A highly-segmented pulse-shape-sensitive plastic scintillator detector incorporating silicon photomultiplier arrays. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 942, 2019. p.162334

  2. E.R. Siciliano, J.H. Ely, R.T. Kouzes, B.D. Milbrath, J.E. Schweppe, D.C. Stromswold, Comparison of PVT and NaI (tl) scintillators for vehicle portal monitor applications. Nucl. Instrum. Methods Phys. Res., Sect. A 550(3), 647–674 (2005)

    Article  CAS  Google Scholar 

  3. T.J. Hajagos, C. Liu, N.J. Cherepy, Q. Pei. High-Z sensitized plastic scintillators: a review. Advanced Materials, 30(27), 2018. p.1706956

  4. J.B. Birks, The Theory and Practice of Scintillation Counting: International Series of Monographs in Electronics and Instrumentation, vol. 27 (Elsevier, Amsterdam, 2013)

    Google Scholar 

  5. S.W. Moser, W.F. Harder, C.R. Hurlbut, M.R. Kusner, Principles and practice of plastic scintillator design. Radiat. Phys. Chem 41(1–2), 31–36 (1993)

    Article  CAS  Google Scholar 

  6. L. Alex, R. Paulraj, M. Tyagi, Effect of PPO and POPOP activators on the scintillation performance of polystyrene-based scintillator. Journal of Optoelectronics and Advanced Materials 24, 365–371 (2022)

    CAS  Google Scholar 

  7. S.A. Ponomarenko, N.M. Surin, O.V. Borshchev, Y.N. Luponosov, D.Y. Akimov, I.S. Alexandrov, A.A. Burenkov, A.G. Kovalenko, V.N. Stekhanov, E.A. Kleymyuk, O.T. Gritsenko, Nanostructured organosilicon luminophores and their application in highly efficient plastic scintillators. Sci. Rep 4(1), 1–8 (2014)

    Article  Google Scholar 

  8. Y. Xu, H. Deng, H. Lei, G. Chang, Initiator-free preparation and properties of polystyrene-based plastic scintillators. J. Polym. Res 26(8), 1–9 (2019)

    Article  Google Scholar 

  9. P.S. Alegaonkar, V.N. Bhoraskar, S.V. Bhoraskar, Polyimide: From Radiation-Induced Degradation Stability to Flat, Flexible Devices, in Polyimide. (IntechOpen, London, 2021)

    Google Scholar 

  10. Z. Wu, D. Wu, S. Qi, T. Zhang, R. Jin, Preparation of surface conductive and highly reflective silvered polyimide films by surface modification and in situ self-metallization technique. Thin Solid Films 493(1–2), 179–184 (2005)

    Article  CAS  Google Scholar 

  11. V. Lef, (12) United States Patent, 2016

  12. N. Zaitseva, B.L. Rupert, I. PaweŁczak, A. Glenn, H.P. Martinez, L. Carman, M. Faust, N. Cherepy, Payne, S. Plastic scintillators with efficient neutron/gamma pulse shape discrimination. Nucl. Instrum. Methods Phys. Res., Sect. A 668, 88–93 (2012)

    Article  CAS  Google Scholar 

  13. N.P. Zaitseva, A.M. Glenn, A.N. Mabe, M.L. Carman, C.R. Hurlbut, J.W. Inman, S.A. Payne, Recent developments in plastic scintillators with pulse shape discrimination. Nucl. Instrum. Methods Phys. Res., Sect. A 889, 97–104 (2018)

    Article  CAS  Google Scholar 

  14. M. Dalla Palma, A. Quaranta, T. Marchi, G. Collazuol, S. Carturan, M. Cinausero, M. Degerlier, F. Gramegna, Red emitting phenyl-polysiloxane based scintillators for neutron detection. IEEE Trans. Nucl. Sci 61(4), 2052–2058 (2014)

    Article  CAS  Google Scholar 

  15. F.D. Brooks, Nucl, Instr. and Meth. 162, 477 (1979)

    Article  CAS  Google Scholar 

  16. G.H. Bertrand, M. Hamel, S. Normand, F. Sguerra, Pulse shape discrimination between (fast or thermal) neutrons and gamma rays with plastic scintillators: state of the art. Nucl. Instrum. Methods Phys. Res., Sect. A 776, 114–128 (2015)

    Article  CAS  Google Scholar 

  17. G.H. Bertrand, M. Hamel, F. Sguerra, Current status on plastic scintillators modifications. Chemistry–A Eur. J. 20(48), 15660–15685 (2014)

    Article  CAS  Google Scholar 

  18. F. Gao, J.R. Dharia, W.M. McGowan, E.F. Hilinski, K.F. Johnson, J.B. Schlenoff New fluors for radiation tolerant scintillators. MRS Online Proceedings Library (OPL), 348, 1994

  19. N. Zhang, X. Yu, J. Hu, F. Xue, E. Ding, Synthesis of silver nanoparticle-coated poly (styrene-co-sulfonic acid) hybrid materials and their application in surface-enhanced Raman scattering (SERS) tags. RSC Adv 3(33), 13740–13747 (2013)

    Article  CAS  Google Scholar 

  20. N.N. Asemi, M.J. Aljaafreh, S. Prasad, S. Aldawood, M.S. AlSalhi, Development of a gamma-ray scintillation detector based on blue-emitting oligomers and ZnO nanoparticles. Journal of King Saud University-Science 34(4), 101967 (2022)

    Article  Google Scholar 

  21. D. Wankasi, E.D. Dikio, Comparative study of polystyrene and polymethylmethacrylate wastes as adsorbents for Sorption of Pb2 + from aqueous solution. Asian J. Chem. 24, 8295–8302 (2014)

    Article  Google Scholar 

  22. L.M. Santiago, Y. Masmoudi, A. Tarancón, R. Djerafi, H. Bagán, J.F. García, E. Badens, Polystyrene based sub-micron scintillating particles produced by supercritical anti-solvent precipitation. J. Supercrit. Fluids 103, 18–27 (2015)

    Article  CAS  Google Scholar 

  23. M.A. Mahdi, S.R. Yousefi, L.S. Jasim, M. Salavati-Niasari, Green synthesis of DyBa2Fe3O7. 988/DyFeO3 nanocomposites using almond extract with dual eco-friendly applications: photocatalytic and antibacterial activities. Int. J. Hydrog. Energy 47(31), 14319–14330 (2022)

    Article  CAS  Google Scholar 

  24. M. Mazilu, A.C. De Luca, A. Riches, C.S. Herrington, K. Dholakia, Optimal algorithm for fluorescence suppression of modulated Raman spectroscopy. Opt. Express 18(11), 11382–11395 (2010)

    Article  CAS  Google Scholar 

  25. C. Wang, X. Qi, Y. Wang, B. Wu, Y. Tian, Room-temperature direct heterogeneous bonding of glass and polystyrene substrates. J. Electrochem. Soc 165(8), B3091 (2018)

    Article  CAS  Google Scholar 

  26. C. Girardeaux, J.J. Pireaux, Analysis of polystyrene (PS) by XPS. Surf. Sci. Spectra 4(2), 130–133 (1996)

    Article  CAS  Google Scholar 

  27. L. Alex, R. Paulraj, Sonu, M. Tyagi, Development of large size fast timing and radiation resistant PVT-based plastic scintillator detector. J. Mater. Sci.: Mater. Electron 34(2), 127 (2023)

    CAS  Google Scholar 

  28. H. Ross, Liquid Scintillation Counting and Organic Scintillators (CRC Press, 1991)

  29. K.D. Rakes, Evaluating the Response of Polyvinyl Toluene Scintillators used in Portal Detectors (AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH GRADUATE SCHOOL OF ENGINEERING AND MANAGEMENT, 2008)

  30. J. Zhu, C. Deng, H. Jiang, Z. Zheng, R. Gong, Y. Bi, L. Zhang, R. Lin, The impact of fluorescent dyes on the performances of polystyrene-based plastic scintillators. Nucl. Instrum. Methods Phys. Res., Sect. A 835, 136–141 (2016)

    Article  CAS  Google Scholar 

  31. C.L. Renschler, L.A. Harrah, Reduction of reabsorption effects in scintillators by employing solutes with large stokes shifts. Nucl. Instrum. Methods Phys. Res., Sect. A 235(1), 41–45 (1985)

    Article  Google Scholar 

  32. V.N. Salimgareeva, S.V. Kolesov, Plastic scintillators based on polymethyl methacrylate: a review. Instruments and Experimental Techniques 48(3), 273–282 (2005)

    Article  CAS  Google Scholar 

  33. E.V. van Loef, G. Markosyan, U. Shirwadkar, K.S. Shah, Plastic scintillators with neutron/gamma pulse shape discrimination. IEEE Trans. Nucl. Sci 61(1), 467–471 (2013)

    Article  Google Scholar 

  34. E. van Loef, G. Markosyan, U. Shirwadkar, M. McClish, K. Shah, Gamma-ray spectroscopy and pulse shape discrimination with a plastic scintillator. Nucl. Instrum. Methods Phys. Res., Sect. A 788, 71–72 (2015)

    Article  Google Scholar 

  35. P.N. Zhmurin, V.N. Lebedev, V.D. Titskaya, A.F. Adadurov, D.A. Elyseev, V.N. Pereymak, Polystyrene-based scintillator with pulse-shape discrimination capability. Nucl. Instrum. Methods Phys. Res., Sect. A 761, 92–98 (2014)

    Article  CAS  Google Scholar 

  36. C.H. Lee, J. Son, T.H. Kim, Y.K. Kim, Characteristics of plastic scintillators fabricated by a polymerization reaction. Nuclear Eng. Technol. 49(3), 592–597 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Crystal Technology Section (CTS) & X-ray & Neutron Techniques Section (X&NTS), Technical Physics Division, Bhabha Atomic Research Centre (BARC), Mumbai for providing the lab facility.

Funding

The financial support for this work was provided by SERB, India [Project sanction No: CRG/2020/003536].

Author information

Authors and Affiliations

Authors

Contributions

Lizbeth Alex: Investigation, Material synthesis, Data curation and analysis, Writing – original draft preparation. Rajesh Paulraj: Conceptualization, Methodology, Funding acquisition, Supervision, Project administration, Writing – review & editing. Sonu: Visualization, Validation, Data analysis. Mohit Tyagi: Visualization, Investigation, Resources, Writing – review & editing.

Corresponding author

Correspondence to Rajesh Paulraj.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest. The order of authors listed in the manuscript has been approved by all of them.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 170.3 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alex, L., Paulraj, R., Sonu et al. Green emitting plastic scintillator with neutron/gamma pulse shape discrimination for fast neutron detection. J Mater Sci: Mater Electron 34, 576 (2023). https://doi.org/10.1007/s10854-023-10018-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10018-4

Navigation