Skip to main content
Log in

Preparation of bismuth-based perovskite Cs3Bi2I6Br3 single crystal for X-ray detector application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cs3Bi2I6Br3 perovskite is one of the bismuth iodide family compounds. Because it contains no toxic lead, and has high stability in air and humidity, endowing a potential application prospects in photoelectric and radiation detectors. Herein, the Cs3Bi2I6Br3 single crystal (Φ13 × 65 mm3) with a (001) preferred direction was grown by using the melt method with solvent-synthesized polycrystalline particles, and the thin single wafer with a thickness up to 0.95 mm was obtained. The as-grown single crystal possesses high infrared transmittance of up to 70% in the range from 400 to 4000 cm−1 and an optical band gap of about 2.03 eV estimated from the visible absorption curve. A highly intrinsic resistivity 2.3 × 1010 Ω·cm and a dielectric constant about 10 were obtained from the electrical performance parameter measurements. The X-ray sensitivity of the X-ray detector is 55.62 µC/Gyair/cm2 (incident dose rate 0.24 mGy/s), as well as the signal-to-noise ratio, is up to 301. These results indicate Cs3Bi2I6Br3 single crystals are a potential material for X-ray detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data produced or investigated throughout this work are involved in this manuscript.

References

  1. M. Ahmadi, T. Wu, B Hu, Adv. Mater. 29, 24 (2017). Doi:https://doi.org/10.1002/adma.201605242

    Article  CAS  Google Scholar 

  2. S.D. Stranks, G.E. Eperon, G. Grancini et al., Science 342, 341 (2013). Doi:https://doi.org/10.1126/science.1243982

    Article  CAS  Google Scholar 

  3. M. Graetzel, Acc. Chem. Res. 50, 487 (2017). Doi:https://doi.org/10.1021/acs.accounts.6b00492

    Article  CAS  Google Scholar 

  4. L. Zhang, Y. Liu, X. Ye et al., Cryst. Growth Des. 18, 6652 (2018). Doi:https://doi.org/10.1021/acs.cgd.8b00896

    Article  CAS  Google Scholar 

  5. G. Flora, D. Gupta, A. Tiwari, Interdisciplinary Toxicol. 5, 47 (2012). Doi:https://doi.org/10.2478/v10102-012-0009-2

    Article  CAS  Google Scholar 

  6. A. Babayigit, A. Ethirajan, M. Muller, B. Conings, Nat. Mater. 15, 247 (2016). Doi:https://doi.org/10.1038/nmat4572

    Article  CAS  Google Scholar 

  7. M.D. Birowosuto, D. Cortecchia, W. Drozdowski et al., Sci. Rep. 6, 10 (2016). Doi:https://doi.org/10.1038/srep37254

    Article  CAS  Google Scholar 

  8. S. Ghosh, S. Paul, S.K. De, Part. Part. Syst. Charact. 35, 6 (2018). Doi:https://doi.org/10.1002/ppsc.201800199

    Article  CAS  Google Scholar 

  9. X.T. Wu, W.D. Song, Q. Li, X.X. Zhao, D.S. He, ZW Quan, Chem. -Asian J. 13, 1654 (2018). Doi:https://doi.org/10.1002/asia.201800573

    Article  CAS  Google Scholar 

  10. T.C. Jellicoe, J.M. Richter, H.F.J. Glass et al., J. Am. Chem. Soc. 138, 2941 (2016). Doi:https://doi.org/10.1021/jacs.5b13470

    Article  CAS  Google Scholar 

  11. Y. Yang, H.R. Peng, C. Liu et al., J. Mater. Chem. A 7, 6450 (2019). Doi:https://doi.org/10.1039/c8ta11925b

    Article  CAS  Google Scholar 

  12. M. Pham, J. Harris, J. Shaffer et al., J. Mater. Sci. -Mater Electron. 30, 9438 (2019). Doi:https://doi.org/10.1007/s10854-019-01275-3

    Article  CAS  Google Scholar 

  13. Y.C. Liu, Z. Xu, Z. Yang et al., Matter 3, 180 (2020). Doi:https://doi.org/10.1016/j.matt.2020.04.017

    Article  Google Scholar 

  14. Y.X. Zhang, Y.C. Liu, Z. Xu et al., Nat. Commun. 11, 2 (2020). Doi:https://doi.org/10.1038/s41467-020-16809-1

    Article  CAS  Google Scholar 

  15. J.Y. Zhang, A.F. Li, B.H. Li et al., ACS Photonics 9, 641 (2022). Doi:https://doi.org/10.1021/acsphotonics.1c01647

    Article  CAS  Google Scholar 

  16. B.B. Yu, M. Liao, J.X. Yang et al., J. Mater. Chem. A 7, 8818 (2019). Doi:https://doi.org/10.1039/c9ta01978b

    Article  CAS  Google Scholar 

  17. D. Liu, B.B. Yu, M. Liao et al., ACS Appl. Mater. Interfaces 12, 30530 (2020). Doi:https://doi.org/10.1021/acsami.0c05636

    Article  CAS  Google Scholar 

  18. S. Bonomi, P. Galinetto, M. Patrini, L. Romani, L Malavasi, Inorg. Chem. 60, 14142 (2021). Doi:https://doi.org/10.1021/acs.inorgchem.1c01545

    Article  CAS  Google Scholar 

  19. M. Daum, S. Deumel, M. Sytnyk et al., Adv. Funct. Mater. 31, 10 (2021). Doi:https://doi.org/10.1002/adfm.202102713

    Article  CAS  Google Scholar 

  20. X.H. Cheng, L. Jing, Y. Zhao, S.J. Du, J.X. Ding, T.L. Zhou, J. Mater. Chem. C 6, 1579 (2018). Doi:https://doi.org/10.1039/c7tc05156e

    Article  CAS  Google Scholar 

  21. H.J. Zhang, Y.D. Xu, Q.H. Sun et al., Crystengcomm 20, 4935 (2018). Doi:https://doi.org/10.1039/c8ce00925b

    Article  CAS  Google Scholar 

  22. A. Nila, M. Baibarac, A. Matea, R. Mitran, I Baltog, Phys. Status Solidi B-Basic Solid State Phys. 254, 8 (2017). Doi:https://doi.org/10.1002/pssb.201552805

    Article  CAS  Google Scholar 

  23. H. Yoon, S.E. Lindo, M.S. Goorsky, J. Cryst. Growth 174, 775 (1997). Doi:https://doi.org/10.1016/s0022-0248(97)00059-6

    Article  CAS  Google Scholar 

  24. B.H. Stuart, Introduction, in Infrared Spectroscopy: Fundamentals and Applications. ed. by D.J. Ando, B.H. Stuart (Elsevier, Amsterdam, 2004)

    Chapter  Google Scholar 

  25. G. Grosso, G.P. Parravicini, Solid State Physics, Second. (Academic Press, Amsterdam, 2014)

    Google Scholar 

  26. S. Sen, D.R. Rhiger, C. Curtis, M.H. Kalisher, H.L. Hettich, MC Currie, J. Electron. Mater 30, 611 (2001). Doi:https://doi.org/10.1007/BF02665843

    Article  CAS  Google Scholar 

  27. Q.H. Sun, B. Xiao, L.L. Ji et al., J. Energy Chem. 66, 459 (2022). Doi:https://doi.org/10.1016/j.jechem.2021.08.052

    Article  CAS  Google Scholar 

  28. Y.B. Ni, H.X. Wu, M.S. Mao, C. Lin, G.C. Cheng, Z.Y. Wang, Front. Optoelectron. 4, 141 (2011). Doi:https://doi.org/10.1007/s12200-011-0158-5

    Article  Google Scholar 

  29. Y. Lin-sen, Z. Bei-jun, Z. Shi-fu et al., J. Funct. Mater. 37, 1746 (2006). Doi:https://doi.org/10.3321/j.issn:1001-9731.2006.11.018

    Article  Google Scholar 

  30. F. Bai, Y.H. Hu, Y.Q. Hu, T. Qiu, X.L. Miao, S.F. Zhang, Sol. Energy Mater. Sol. Cells 184, 15 (2018). Doi:https://doi.org/10.1016/j.solmat.2018.04.032

    Article  CAS  Google Scholar 

  31. B. Ghosh, B. Wu, H.K. Mulmudi et al., ACS Appl. Mater. Interfaces 10, 35000 (2018). Doi:https://doi.org/10.1021/acsami.7b14735

    Article  CAS  Google Scholar 

  32. T.L. Hodgkins, C.N. Savory, K.K. Bass et al., Chem. Commun 55, 3164 (2019). Doi:https://doi.org/10.1039/c8cc09947b

    Article  CAS  Google Scholar 

  33. T. Takahashi, S. Watanabe, IEEE Trans. Nucl. Sci 48, 950 (2002). Doi:https://doi.org/10.1109/23.958705

    Article  Google Scholar 

  34. C.C. Stoumpos, C.D. Malliakas, J.A. Peters et al., Cryst. Growth Des. 13, 2722 (2013). Doi:https://doi.org/10.1117/12.2238221

    Article  CAS  Google Scholar 

  35. T. Saito, T. Iwasaki, S. Kurosawa, A. Yoshikawa, T Den, Nucl. Instrum. Methods phys. Res. Sect. A-Accel. Spectrom. Dect Assoc. Equip. 806, 395 (2016). Doi:https://doi.org/10.1016/j.nima.2015.10.036

    Article  CAS  Google Scholar 

  36. X. Hu, X.D. Zhang, L. Liang et al., Adv. Funct. Mater. 24, 7373 (2014). Doi:https://doi.org/10.1002/adfm.201402020

    Article  CAS  Google Scholar 

  37. H. Sun, X.H. Zhu, P.H. Wangyang, X.Y. Gao, S.F. Zhu, B.J. Zhao, J. Mater. Sci. -Mater Electron. 29, 20003 (2018). Doi:https://doi.org/10.1007/s10854-018-0130-x

    Article  CAS  Google Scholar 

  38. AA Hussain, ACS Appl. Mater. Interfaces 12, 46317 (2020). Doi:https://doi.org/10.1021/acsami.0c14083

    Article  CAS  Google Scholar 

  39. S. Devasia, S. Shaji, D.A. Avellaneda, J.A.A. Martinez, B. Krishnan, J. Alloy Compd. 893, 12 (2022). Doi:https://doi.org/10.1016/j.jallcom.2021.162294

    Article  CAS  Google Scholar 

  40. M.Z. Kabir, S.O. Kasap, J. Vacuum Sci. Technol. A 20, 1082 (2002). Doi:https://doi.org/10.1116/1.1460900

    Article  CAS  Google Scholar 

  41. M.Z. Kabir, S.O. Kasap, J. Vac Sci. Technol. A 22, 975 (2004). https://doi.org/10.1116/1.1647588

    Article  CAS  Google Scholar 

  42. S. Wei, S. Tie, K. Shen et al., Adv. Opt. Mater. 9, 2101351 (2021). https://doi.org/10.1002/adom.202101351

    Article  CAS  Google Scholar 

  43. Q.H. Sun, Y.D. Xu, H.J. Zhang et al., J. Mater. Chem. A 6, 23388 (2018). https://doi.org/10.1039/c8ta09525f

    Article  CAS  Google Scholar 

  44. S. Kasap, J. Phys. D 33, 2853 (2000). https://doi.org/10.1088/0022-3727/33/21/326

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant 62005029 and Sichuan Science and Technology Research Foundation under Grant 2021YFG0010.

Author information

Authors and Affiliations

Authors

Contributions

WC investigates the progress of research fields, designs and conducts experiments, analyzes experimental data, and finally writes and revises manuscripts. HS is primarily responsible for writing review, project management and funding acquisition. YJ and HY supervise the experiment and assist in the analysis of the experimental data. XZ and YH are responsible for data management.

Corresponding author

Correspondence to Hui Sun.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Sun, H., Jin, Y. et al. Preparation of bismuth-based perovskite Cs3Bi2I6Br3 single crystal for X-ray detector application. J Mater Sci: Mater Electron 34, 496 (2023). https://doi.org/10.1007/s10854-023-09897-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09897-4

Navigation