Skip to main content

Advertisement

Log in

Zinc Strontium Sulfide@Carbon nanotube composite electrode materials for high-performance supercapattery devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High-performance energy storage devices (ESD) are essential to address the rising demand for electric energy. Hybrid energy storage systems provide moderate energy and power density as it merges batteries and supercapacitors. This study used the zinc strontium sulfide (ZnSrS) incorporated with carbon nanotube (CNT) for supercapattery devices. The surface area of CNT@ZnSrS was determined using Brunauer Emmett Teller (BET) calculations to be 17.73 m2g−1. A three-electrode configuration was used to compute the specific capacity of CNT, ZnSrS, and CNT@ZnSrS. The anticipated capacity for CNT@ZnSrS was 788 Cg−1, higher than individual ZnSrS and CNT. In the design of the supercapattery, CNT@ZnSrS served as a positive, while activated carbon was the negative electrode. The specific capacity of the supercapattery device (CNT@ZnSrS//AC) was 192 Cg−1. The supercapattery (CNT@ZnSrS//AC) delivers a superior energy density of 45.23 Wh-kg−1. Additionally, the stability test on the supercapattery device (CNT@ZnSrS//AC) was performed by submitting it to 10,000 consecutive charging/discharging cycles. After completing these cycles, this device shows excellent capacity retention of 91%. This research indicates that incorporating CNT significantly improves the electrochemical performance of ZnSrS as advanced material for energy in hybrid energy storage devices in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data are available on request.

References

  1. J. Liang, C. Jiang, W. Wu, Appl. Phys. Rev. 8, 021319 (2021)

    Article  CAS  Google Scholar 

  2. D. Zhao, M. Dai, Y. Zhao, H. Liu, Y. Liu, X. Wu, Nano Energy 72, 104715 (2020)

    Article  CAS  Google Scholar 

  3. S. Bhoyate, P.K. Kahol, R.K. Gupta, in Broadening the Horizon for Supercapacitor Research via 2D Material Systems. Nanoscience (2020), pp. 120–149

  4. L. Shen, L. Yu, H.B. Wu, X.-Y. Yu, X. Zhang, X.W.D. Lou, Nat. Commun. 6, 1 (2015)

    Google Scholar 

  5. P. Huang, C. Lethien, S. Pinaud et al., Science 351, 691 (2016)

    Article  CAS  Google Scholar 

  6. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, Chem. Soc. Rev. 44, 7484 (2015)

    Article  CAS  Google Scholar 

  7. Y. Shao, M.F. El-Kady, J. Sun et al., Chem. Rev. 118, 9233 (2018)

    Article  CAS  Google Scholar 

  8. N. Duraisamy, A. Numan, K. Ramesh, K.-H. Choi, S. Ramesh, Mater. Lett. 161, 694 (2015)

    Article  CAS  Google Scholar 

  9. Y. Ouyang, X. Xia, H. Ye et al., ACS Appl. Mater. Interfaces. 10, 3549 (2018)

    Article  CAS  Google Scholar 

  10. X. Liu, A. Zhou, T. Pan et al., J. Mater. Chem. A 4, 8421 (2016)

    Article  CAS  Google Scholar 

  11. K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Water Res. 88, 428 (2016)

    Article  CAS  Google Scholar 

  12. X. Zhang, C. Jiang, J. Liang, W. Wu, J. Mater. Chem. A 9, 8099 (2021)

    Article  CAS  Google Scholar 

  13. J. Liang, B. Tian, S. Li, C. Jiang, W. Wu, Adv. Energy Mater. 10, 2000022 (2020)

    Article  CAS  Google Scholar 

  14. P. Forouzandeh, V. Kumaravel, S.C. Pillai, Catalysts 10, 969 (2020)

    Article  CAS  Google Scholar 

  15. D.P. Dubal, N.R. Chodankar, D.-H. Kim, P. Gomez-Romero, Chem. Soc. Rev. 47, 2065 (2018)

    Article  CAS  Google Scholar 

  16. M.P. Browne, Z. Sofer, M. Pumera, Energy Environ. Sci. 12, 41 (2019)

    Article  CAS  Google Scholar 

  17. Z. Liu, J. Xu, D. Chen, G. Shen, Chem. Soc. Rev. 44, 161 (2015)

    Article  CAS  Google Scholar 

  18. S. Boukhalfa, K. Evanoff, G. Yushin, Energy Environ. Sci. 5, 6872 (2012)

    Article  CAS  Google Scholar 

  19. H. Jiang, C. Li, T. Sun, J. Ma, Nanoscale 4, 807 (2012)

    Article  CAS  Google Scholar 

  20. J. Pu, Z. Wang, K. Wu, N. Yu, E. Sheng, Phys. Chem. Chem. Phys. 16, 785 (2014)

    Article  CAS  Google Scholar 

  21. M. Dai, H. Liu, D. Zhao et al., ACS Applied Nano Materials 4, 5461 (2021)

    Article  CAS  Google Scholar 

  22. M. Winter, R.J. Brodd, Chem. Rev. 104, 4245 (2004)

    Article  CAS  Google Scholar 

  23. M.Z. Iqbal, M.M. Faisal, S.R. Ali, A.M. Afzal, M.R. Karim, M.A. Kamran, & T. Alharbi, Strontium phosphide-polyaniline composites for high performance supercapattery devices. Ceram. Int. 46, 10203–10214 (2020)

  24. F.S. Omar, A. Numan, N. Duraisamy, S. Bashir, K. Ramesh, S. Ramesh, RSC Adv. 6, 76298 (2016)

    Article  CAS  Google Scholar 

  25. F. Wang, S. Xiao, Y. Zhu et al., J. Power Sources 246, 19 (2014)

    Article  CAS  Google Scholar 

  26. J.R. Miller, A.F. Burke, Electrochem. Soc. Interface 17, 53 (2008)

    Article  CAS  Google Scholar 

  27. M.D. Stoller, R.S. Ruoff, Energy Environ. Sci. 3, 1294 (2010)

    Article  CAS  Google Scholar 

  28. R.T. Yadlapalli, R.R. Alla, R. Kandipati, A. Kotapati, J. Energy Storage 49, 104194 (2022). https://doi.org/10.1016/j.est.2022.104194

    Article  Google Scholar 

  29. Y. Zhong, X. Cao, L. Ying et al., J. Colloid Interface Sci. 561, 265 (2020)

    Article  CAS  Google Scholar 

  30. S.A. Pervez, D. Kim, C.-H. Doh, U. Farooq, H.-Y. Choi, J.-H. Choi, ACS Appl. Mater. Interfaces. 7, 7635 (2015)

    Article  CAS  Google Scholar 

  31. Y. Yu, W. Gao, Z. Shen et al., J. Mater. Chem. A 3, 16633 (2015)

    Article  CAS  Google Scholar 

  32. L. Liu, Z. Niu, J. Chen, Chem. Soc. Rev. 45, 4340 (2016)

    Article  CAS  Google Scholar 

  33. P. Du, X. Hu, C. Yi et al., Adv. Func. Mater. 25, 2420 (2015)

    Article  CAS  Google Scholar 

  34. Y. Wang, Y. Xia, Adv. Mater. 25, 5336 (2013)

    Article  CAS  Google Scholar 

  35. I. Oh, M. Kim, J. Kim, Energy 86, 292 (2015)

    Article  CAS  Google Scholar 

  36. Z.-S. Wu, W. Ren, D.-W. Wang, F. Li, B. Liu, H.-M. Cheng, ACS Nano 4, 5835 (2010)

    Article  CAS  Google Scholar 

  37. T.S. Mathis, N. Kurra, X. Wang, D. Pinto, P. Simon, Y. Gogotsi, Adv. Energy Mater. 9, 1902007 (2019)

    Article  CAS  Google Scholar 

  38. N. Denge, Study of hybrid super-capacitor. Int. Res. J. Eng. Technol. 3, 1012–1016 (2016)

  39. Z. Li, Y. Mi, X. Liu, S. Liu, S. Yang, J. Wang, J. Mater. Chem. 21, 14706 (2011)

    Article  CAS  Google Scholar 

  40. L. Li, Z.A. Hu, N. An, Y.Y. Yang, Z.M. Li, H.Y. Wu, J. Phys. Chem. C 118, 22865 (2014)

    Article  CAS  Google Scholar 

  41. D.H. Seo, S. Yick, Z.J. Han, J.H. Fang, K. Ostrikov, Chemsuschem 7, 2317 (2014)

    Article  CAS  Google Scholar 

  42. H. Wang, C. Peng, F. Peng, H. Yu, J. Yang, Mater. Sci. Eng., B 176, 1073 (2011)

    Article  CAS  Google Scholar 

  43. B. You, N. Li, H. Zhu, X. Zhu, J. Yang, Chemsuschem 6, 474 (2013)

    Article  CAS  Google Scholar 

  44. D. Zhao, M. Dai, H. Liu et al., Adv. Mater. Interfaces 6, 1901308 (2019)

    Article  CAS  Google Scholar 

  45. W. Shimizu, S. Makino, K. Takahashi, N. Imanishi, W. Sugimoto, J. Power Sources 241, 572 (2013)

    Article  CAS  Google Scholar 

  46. B. Akinwolemiwa, C. Peng, G.Z. Chen, J. Electrochem. Soc. 162, A5054 (2015)

    Article  CAS  Google Scholar 

  47. S. Surendran, R.K. Selvan, Adv. Mater. Interfaces 5, 1701056 (2018)

    Article  Google Scholar 

  48. M.Z. Iqbal, M.M. Faisal, S.R. Ali, S. Farid, A.M. Afzal, Electrochim. Acta 346, 136039 (2020)

    Article  CAS  Google Scholar 

  49. M. Minakshi, D. Mitchell, R. Jones et al., Nanoscale 8, 11291 (2016)

    Article  CAS  Google Scholar 

  50. D.P. Dubal, O. Ayyad, V. Ruiz, P. Gomez-Romero, Chem. Soc. Rev. 44, 1777 (2015)

    Article  CAS  Google Scholar 

  51. C. Liu, X. Wu, H. Xia, CrystEngComm 20, 4735 (2018)

    Article  CAS  Google Scholar 

  52. B.-S. Yin, Z.-B. Wang, S.-W. Zhang, C. Liu, Q.-Q. Ren, K. Ke, ACS Appl. Mater. Interfaces. 8, 26019 (2016)

    Article  CAS  Google Scholar 

  53. J. Sun, Y. Huang, Y.N.S. Sea et al., Mater. Today Energy 5, 1 (2017)

    Article  Google Scholar 

  54. M. Zhi, C. Xiang, J. Li, M. Li, N. Wu, Nanoscale 5, 72 (2013)

    Article  CAS  Google Scholar 

  55. M.Z. Iqbal, M.M. Faisal, S.R. Ali, A.M. Afzal, J. Electroanal. Chem. 871, 114299 (2020)

    Article  CAS  Google Scholar 

  56. T. Li, S. Kaercher, P.W. Roesky, Chem. Soc. Rev. 43, 42 (2014)

    Article  Google Scholar 

  57. Y. Shao, Y. Zhao, H. Li, C. Xu, ACS Appl. Mater. Interfaces. 8, 35368 (2016)

    Article  CAS  Google Scholar 

  58. S. Chandrasekaran, L. Yao, L. Deng et al., Chem. Soc. Rev. 48, 4178 (2019)

    Article  CAS  Google Scholar 

  59. X. Rui, H. Tan, Q. Yan, Nanoscale 6, 9889 (2014)

    Article  CAS  Google Scholar 

  60. A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, D. Aurbach, J. Mater. Chem. A 5, 12653 (2017)

    Article  CAS  Google Scholar 

  61. Z.S. Iro, C. Subramani, S. Dash, Int. J. Electrochem. Sci 11, 10628 (2016)

    Article  CAS  Google Scholar 

  62. J.S. Sanchez, A. Pendashteh, J. Palma, M. Anderson, R. Marcilla, J. Mater. Chem. A 7, 20414 (2019)

    Article  CAS  Google Scholar 

  63. M. Dai, D. Zhao, H. Liu, X. Zhu, X. Wu, B. Wang, ACS Appl. Energy Mater. 4, 2637 (2021)

    Article  CAS  Google Scholar 

  64. R. Barik, P.P. Ingole, Curr. Opin. Electrochem. 21, 327 (2020)

    Article  CAS  Google Scholar 

  65. Y. Liu, D. Zhao, H. Liu, A. Umar, X. Wu, Chin. Chem. Lett. 30, 1105 (2019)

    Article  CAS  Google Scholar 

  66. S. Stankovich, D.A. Dikin, G.H. Dommett et al., Nature 442, 282 (2006)

    Article  CAS  Google Scholar 

  67. F. Chen, Y. Cao, D. Jia, Chem. Eng. J. 234, 223 (2013)

    Article  CAS  Google Scholar 

  68. R. Ramachandran, M. Saranya, P. Kollu, B.P. Raghupathy, S.K. Jeong, A.N. Grace, Electrochim. Acta 178, 647 (2015)

    Article  CAS  Google Scholar 

  69. S. Thangavel, K. Krishnamoorthy, S.-J. Kim, G. Venugopal, J. Alloy. Compd. 683, 456 (2016)

    Article  CAS  Google Scholar 

  70. M.F. Iqbal, M.N. Ashiq, A. Razaq, M. Saleem, B. Parveen, M.-U. Hassan, Electrochim. Acta 273, 136 (2018)

    Article  CAS  Google Scholar 

  71. M. Søgaard, P.V. Hendriksen, M. Mogensen, F.W. Poulsen, E. Skou, Solid State Ionics 177, 3285 (2006)

    Article  Google Scholar 

  72. A. Aguadero, L. Fawcett, S. Taub et al., J. Mater. Sci. 47, 3925 (2012)

    Article  CAS  Google Scholar 

  73. Z. Gao, L.V. Mogni, E.C. Miller, J.G. Railsback, S.A. Barnett, Energy Environ. Sci. 9, 1602 (2016)

    Article  CAS  Google Scholar 

  74. M.Z. Iqbal, A. Khan, A. Numan, S.S. Haider, J. Iqbal, Ultrason. Sonochem. 59, 104736 (2019)

    Article  CAS  Google Scholar 

  75. H. Hassan, M.W. Iqbal, A.M. Afzal, M. Asghar, S. Aftab (2022) J. Solid State Electrochem. 1.

  76. E. Frackowiak, F. Beguin, Carbon 39, 937 (2001)

    Article  CAS  Google Scholar 

  77. S. Tawfick, X. Deng, A.J. Hart, J. Lahann, Phys. Chem. Chem. Phys. 12, 4446 (2010)

    Article  CAS  Google Scholar 

  78. M.Z. Iqbal, S. Alam, A.M. Afzal et al., Solid State Ionics 347, 115276 (2020)

    Article  CAS  Google Scholar 

  79. H. Soleimani, N. Yahya, M. Baig et al., Oil Gas Res 1, 1000104 (2015)

    Google Scholar 

  80. H. Fang, H. Banjade, P. Jena, Nanoscale 13, 14041 (2021)

    Article  CAS  Google Scholar 

  81. B. Liu, X. Hu, X. Li, Y. Li, C. Chen, K.-H. Lam, Sci. Rep. 7, 1 (2017)

    Article  Google Scholar 

  82. H.H. Hegazy, A.M. Afzal, E.R. Shaaban, M.W. Iqbal, S. Muhammad, A.A. Alahmari, Synthesis of MXene and design the high-performance energy harvesting devices with multifunctional applications. Ceram. Int. 49(2), 1710–1719 (2023)

  83. C. Wang, ECS Trans. 68, 1023 (2015)

    Article  CAS  Google Scholar 

  84. R. Zou, K. Xu, T. Wang et al., J. Mater. Chem. A 1, 8560 (2013)

    Article  CAS  Google Scholar 

  85. B.-J. Kim, J.-P. Kim, J.-S. Park, Nanoscale Res. Lett. 9, 1 (2014)

    Article  Google Scholar 

  86. N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, J. Chem. Educ. 95, 197 (2018)

    Article  CAS  Google Scholar 

  87. F.S. Omar, A. Numan, N. Duraisamy, M.M. Ramly, K. Ramesh, S. Ramesh, Electrochim. Acta 227, 41 (2017)

    Article  CAS  Google Scholar 

  88. M. Jin, S.-Y. Lu, L. Ma et al., J. Power Sources 341, 294 (2017)

    Article  CAS  Google Scholar 

  89. P. Simon, Y. Gogotsi, B. Dunn, Science 343, 1210 (2014)

    Article  CAS  Google Scholar 

  90. H. Matsumoto, T. Matsuda, Y. Miyazaki, Chem. Lett. 29, 1430 (2000)

    Article  Google Scholar 

  91. N. Neghmouche, A. Khelef, T. Lanez, J. Fundamental Appl. Sci. 1, 23 (2009)

    Article  Google Scholar 

  92. K.K. Purushothaman, I.M. Babu, B. Saravanakumar, Int. J. Hydrogen Energy 42, 28445 (2017)

    Article  CAS  Google Scholar 

  93. M.S. Javed, A.J. Khan, M. Hanif et al., Int. J. Hydrogen Energy 46, 9976 (2021)

    Article  CAS  Google Scholar 

  94. N. Neghmouche, T. Lanez, Int. Lett. Chem. Phys. Astronomy 4, 37 (2013)

    Article  Google Scholar 

  95. H. Jia, Z. Wang, C. Li et al., J. Mater. Chem. A 7, 6686 (2019)

    Article  CAS  Google Scholar 

  96. S. Vijayakumar, S. Nagamuthu, G. Muralidharan, ACS Appl. Mater. Interfaces. 5, 2188 (2013)

    Article  CAS  Google Scholar 

  97. M.F. Iqbal, M.N. Ashiq, S. Iqbal, N. Bibi, B. Parveen, Electrochim. Acta 246, 1097 (2017)

    Article  CAS  Google Scholar 

  98. M.Z. Iqbal, M.M. Faisal, S.R. Ali et al., Ceram. Int. 46, 10203 (2020)

    Article  CAS  Google Scholar 

  99. D.J. Tarimo, K.O. Oyedotun, A.A. Mirghni, N. Manyala, Int. J. Hydrogen Energy 45, 13189 (2020)

    Article  CAS  Google Scholar 

  100. M.Z. Iqbal, J. Khan, Electrochim. Acta 368, 137529 (2021)

    Article  CAS  Google Scholar 

  101. P. Kulkarni, S. Nataraj, R.G. Balakrishna, D. Nagaraju, M. Reddy, J. Mater. Chem. A 5, 22040 (2017)

    Article  CAS  Google Scholar 

  102. B. Chameh, M. Moradi, S. Kaveian, Synth. Met. 260, 116262 (2020)

    Article  CAS  Google Scholar 

  103. X. Wang, J. Hu, W. Liu, G. Wang, J. An, J. Lian, J. Mater. Chem. A 3, 23333 (2015)

    Article  CAS  Google Scholar 

  104. E. Frackowiak, K. Metenier, V. Bertagna, F. Beguin, Appl. Phys. Lett. 77, 2421 (2000)

    Article  CAS  Google Scholar 

  105. J.R. Macdonald, E. Barsoukov, Impedance spectroscopy: theory, experiment, and applications (John Wiley & Sons, 2018)

    Google Scholar 

  106. C. Niu, E.K. Sichel, R. Hoch, D. Moy, H. Tennent, Appl. Phys. Lett. 70, 1480 (1997)

    Article  CAS  Google Scholar 

  107. C. Sambathkumar, K. Nagavenkatesh, K.M. Krishna, N. Nallamuthu, S. Sudhahar, P. Devendran, Electrochemical exploration on hexadecylamine capped copper sulfide nanocubes using single source precursor. J. Energy Storage 56, 105898 (2022)

  108. M.W. Iqbal, M.M. Faisal, H. ul Hassan et al., J. Energy Storage 52, 104847 (2022)

    Article  Google Scholar 

  109. K. Li, Z. Hu, R. Zhao et al., J. Colloid Interface Sci. 603, 799 (2021)

    Article  CAS  Google Scholar 

  110. S.S. Pujari, S.A. Kadam, Y.-R. Ma et al., J. Electron. Mater. 49, 3890 (2020)

    Article  CAS  Google Scholar 

  111. H. Niu, Y. Liu, B. Mao, N. Xin, H. Jia, W. Shi, Electrochim. Acta 329, 135130 (2020)

    Article  CAS  Google Scholar 

  112. X. Wang, Y. Zhang, J. Zheng et al., J. Colloid Interface Sci. 574, 312 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Deanship of Scientific Research at King Khalid University for funding this work through the Small Groups Project under Grant Number (R.G.P.1/153/43). Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R184), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. The authors would like to thank Riphah International University for supporting this research under project number Riphah- ORIC-22/FEAS-12

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

HuH, MWI and AMA, and SG worked on experiments, data collection, analysis, and interpretation of results. HuH, MWI and AMA, HHH performed the calculation and wrote the manuscript. HuH, MI and AMA helped with the calculation and reviewed the manuscript. All the authors read the approved final manuscript.

Corresponding author

Correspondence to Muhammad Waqas Iqbal.

Ethics declarations

Competing interest

The authors declare that they have no conflict of interest.

Ethical approval

The submitted work should be original and should not have been published elsewhere in any form or language.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1162 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, H., Iqbal, M.W., Gouadria, S. et al. Zinc Strontium Sulfide@Carbon nanotube composite electrode materials for high-performance supercapattery devices. J Mater Sci: Mater Electron 34, 439 (2023). https://doi.org/10.1007/s10854-023-09892-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09892-9

Navigation