Skip to main content
Log in

Improvement in the structural, dielectric, and magnetic properties of CFO-doped KNNS-BKT ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multiferroics/Magnetoelectric materials have received global interest due to the exhibiting ordered coupling between magnetic and ferroelectric phases and simultaneously showing a large magnetoelectric coupling coefficient. In the present work, CoFe2O4-doped 0.97(K0.4Na0.6Nb0.96Sb0.04O3)–0.03(Bi0.5K0.5TiO3) ceramics were synthesized by a modified two-step solid-state reaction method. Moreover, the correlation between structural, dielectric, and magnetic properties was investigated in detail. X-ray diffraction, along with Rietveld refinement, shows the co-existence of rhombohedral (Amm2), tetragonal (P4mm), and cubic (Fd3m) phases in the CoFe2O4-doped ceramics. The scanning electron microscope shows that all the ceramics have rod-like and spherical cuboid-shaped grain morphology. Dielectric study indicates an increase in Curie temperature (TC) with the rise in CoFe2O4 content. These composites have a well-saturated hysteresis loop, confirming the ferromagnetic behavior of composites at room temperature. The composite with x = 0.15 shows a maximum ME coupling coefficient of 21.88 mV/(cm.Oe).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data of this study will be made available from the corresponding author upon reasonable request.

References

  1. C.C. Lekha, A.S. Kumar, S. Vivek, K.V. Saravanan, M. Anantharaman, K. Surendran, K. Nandakumar, S.S. Nair, Room temperature magnetoelectric properties of lead-free alkaline niobate based particulate composites. Ceram. Int. 45(7), 8115–8122 (2019)

    Article  CAS  Google Scholar 

  2. M. Sufyan, Z. Lu, Z. Chen, X. Wang, S.K. Abbas, Multiferroic characterization of 3-phase (1-x)(0.7 BiFeO3–0.3 CoFe2O4)-xPb (Zr, Ti) O3 composites with magnetically driven polarization. J. Alloys Compd. 849, 156681 (2020)

    Article  CAS  Google Scholar 

  3. K. Verma, M.K. Shamim, S. Kumar, S. Sharma, Role of ferrite phase on the structural, ferroelectric and magnetic properties of (1–x) BCT-x CZFO composites. Mater. Chem. Phys. 255, 123284 (2020)

    Article  Google Scholar 

  4. T. Kosub, M. Kopte, R. Hühne, P. Appel, B. Shields, P. Maletinsky, R. Hübner, M.O. Liedke, J. Fassbender, O.G. Schmidt, D. Makarov, Purely antiferromagnetic magnetoelectric random access memory. Nat. commun. 8(1), 1–7 (2017)

    Article  Google Scholar 

  5. M. Bibes, A. Barthélémy, Towards a magnetoelectric memory. Nat. Mater. 7(6), 425–426 (2008)

    Article  CAS  Google Scholar 

  6. J.M. Hu, Z. Li, J. Wang, C.W. Nan, Nan, Electric-field control of strain-mediated magnetoelectric random access memory. J. Appl. Phys. 107(9), 093912 (2010)

    Article  Google Scholar 

  7. X. Chen, A. Hochstrat, P. Borisov, W. Kleemann, Magnetoelectric exchange bias systems in spintronics. Appl. Phys. Lett. 89(20), 202508 (2006)

    Article  Google Scholar 

  8. Y.H. Chu, L.W. Martin, M.B. Holcomb, M. Gajek, S.J. Han, Q. He, N. Balke, C.H. Yang, D. Lee, W. Hu, Q. Zhan, Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7(6), 478–482 (2008)

    Article  CAS  Google Scholar 

  9. M. Lal, M. Shandilya, A.S. Kumar, R. Rai, S.S. Nair, R. Palai, Study of structural and magnetoelectric properties of 1− x (Ba 0.96 Ca 0.04 TiO 3)–x (ZnFe 2 O 4) ceramic composites. J. Mater. Sci.: Mater. Electron. 29(1), 80–85 (2018)

    CAS  Google Scholar 

  10. L. Hu, X. Sun, F. Zhou, J. Qi, A. Wang, C. Wang, M. Liu, M. Feng, Magnetic coupling modulation of flexible Fe3O4/CoFe2O4 heterojunction grown on mica. Ceram. Int. 47(2), 2672–2677 (2020)

    Article  Google Scholar 

  11. F.L. Zabotto, F.P. Milton, A.J. Gualdi, A.J.A. de Oliveira, J.A. Eiras, D. Garcia, Magnetodielectric and magnetoelectric correlation in (1–x) PMN-PT/xCFO 0–3 particulate composites. J. Alloys Compd. 829, 154517 (2020)

    Article  CAS  Google Scholar 

  12. K. Kaur, M. Singh, J. Singh, S. Kumar, Multiferroic and magnetodielectric properties of (1–x) KNN-x CMgFO ceramic-based composites. J. Asian Ceram. Soc. 8(4), 1027–1035 (2020)

    Article  Google Scholar 

  13. H.C. He, J. Wang, J.P. Zhou, C.W. Nan, Ferroelectric and ferromagnetic behavior of Pb (Zr0. 52Ti0. 48) O3–Co0. 9Zn0. 1Fe2O4 multilayered thin films prepared via solution processing. Adv. Funct. Mater. 17(8), 1333–1338 (2007)

    Article  CAS  Google Scholar 

  14. S. He, G. Liu, J. Xu, J. Yang, Y. Chen, S. Kang, S. Yan, L. Mei, Magnetodielectric effect in lead-free multiferroic CoFe2O4/K0. 5Na0. 5NbO3 bilayers. Mater. Lett. 89, 159–162 (2012)

    Article  CAS  Google Scholar 

  15. A.P. Bhat, R. Ramadurai, Grain to grain epitaxy-like nano structures of (Ba,Ca)(ZrTi)O3/CoFe2O4 for magneto–electric based devices. ACS Appl. Nano Mater. 3(11), 11098–11106 (2020)

    Article  Google Scholar 

  16. M. Lal, M. Chandrasekhar, R. Rai, P. Kumar, Structural, dielectric and impedance studies of KNNS–BKT ceramics. Am. J. Mater. Sci. 7(2), 25–34 (2017)

    Google Scholar 

  17. K. Thapa, P. Thankur, N. Sharma, S. Sharma, A. Ali, A. Zaman, M. Lal, Structural and dielectric properties of Ba-doped BNT ceramics. J. Basic Appl. Sci. 18, 47–57 (2022)

    Article  Google Scholar 

  18. V.V. Ivanova, A.G. Kapyshev, Y.N. Venevtsev, G.S. Zhdanov, X-ray determination of the symmetry of elementary cells of the ferroelectric materials (K0. 5Bi0. 5) TiO3 and (Na0. 5Bi0. 5) TiO3 and of high-temperature phase transitions in (K0. 5Bi0. 5) TiO3. Izv. Akad. Nauk SSSR 26, 354–356 (1962)

    CAS  Google Scholar 

  19. J.M. Kim, Y.S. Sung, J.H. Cho, T.K. Song, M.H. Kim, H.H. Chong, T.G. Park, D. Do, S.S. Kim, Piezoelectric and dielectric properties of Lead-Free (1-x)(Bi0. 5K0. 5) TiO3-x BiFeO3 ceramics. Ferroelectrics 404(1), 88–92 (2010)

    Article  CAS  Google Scholar 

  20. V.A. Isupov, Ferroelectric Na0. 5Bi0. 5TiO3 and K0. 5Bi0. 5TiO3 perovskites and their solid solutions. Ferroelectrics 315(1), 123–147 (2005)

    Article  CAS  Google Scholar 

  21. Y.M. Li, Z.Y. Shen, Y.J. Liu, W.C. Shen, Z.M. Wang, High piezoelectric response in KNNS–xBNKZ lead-free ceramics. J. Mater. Sci.: Mater. Electron. 26(12), 9817–9820 (2015)

    CAS  Google Scholar 

  22. J. Wu, D. Xiao, Y. Wang, J. Zhu, P. Yu, Effects of K content on the dielectric, piezoelectric, and ferroelectric properties of 0.95 (K x Na 1− x) NbO 3− 0.05 LiSbO 3 lead-free ceramics. J. Appl. Phys. 103(2), 024102 (2008)

    Article  Google Scholar 

  23. E.K. Akdoğan, K. Kerman, M. Abazari, A. Safari, Origin of high piezoelectric activity in ferroelectric (K 0.44 Na 0.52 Li 0.04)−(Nb 0.84 Ta 0.1 Sb 0.06) O 3 ceramics. Appl. Phys. Lett. 92(11), 112908 (2008)

    Article  Google Scholar 

  24. Y. Gao, J. Zhang, Y. Qing, Y. Tan, Z. Zhang, X. Hao, Remarkably Strong Piezoelectricity of Lead-Free (K0. 45Na0. 55) 0.98 Li0. 02 (Nb0. 77Ta0. 18Sb0. 05) O3 Ceramic. J. Am. Ceram. Soc. 94(9), 2968–2973 (2011)

    Article  CAS  Google Scholar 

  25. J. Du, G.Z. Zang, X.J. Yi, Z.J. Xu, R.Q. Chu, C.L. Ban, Y.Y. Wei, P.P. Zhao, C.M. Wang, Structural, dielectric and piezoelectric features of (Na0. 52K0. 44Li0. 04) Nb0. 87Sb0. 08Ta0. 05O3 ceramics. Mater. Lett. 79, 89–91 (2012)

    Article  CAS  Google Scholar 

  26. J. Wu, H. Tao, Y. Yuan, X. Lv, X. Wang, X. Lou, Role of antimony in the phase structure and electrical properties of potassium–sodium niobate lead-free ceramics. RSC Adv. 5(19), 14575–14583 (2015)

    Article  CAS  Google Scholar 

  27. Y. Chang, Z. Yang, L. Wei, Microstructure, density, and dielectric properties of lead-free (K0. 44Na0. 52Li0. 04)(Nb0. 96− xTaxSb0. 04) O3 piezoelectric ceramics. J. Am. Ceram. Soc. 90(5), 1656–1658 (2007)

    Article  CAS  Google Scholar 

  28. Z. Yang, Y. Chang, L. Wei, Phase transitional behavior and electrical properties of lead-free (K 0.44 Na 0.52 Li 0.04)(Nb 0.96− x Ta x Sb 0.04) O 3 piezoelectric ceramics. Appl. Phys. Lett. 90(4), 042911 (2007)

    Article  Google Scholar 

  29. Z. Yu, X. Jiang, Q. Yang, C. Chen, N. Tu, S. Zhou, Electrical Properties of K0. 52Na0. 44Li0. 04)(Nb0. 86Ta0. 10Sb0. 04) O3 Lead-Free Piezoelectric Ceramics. J. Chinese Ceram. Soc. 39(5), 812–817 (2011)

    CAS  Google Scholar 

  30. H. Yanagihara, K. Uwabo, M. Minagawa, E. Kita, N. Hirota, Perpendicular magnetic anisotropy in CoFe2O4 (001) films epitaxially grown on MgO (001). J. Appl. Phys. 109(7), 07C122 (2011)

    Article  Google Scholar 

  31. K.K. Mohaideen, P. Joy, High magnetostriction parameters for low-temperature sintered cobalt ferrite obtained by two-stage sintering. J. Magn. Magn. Mater. 371, 121–129 (2014)

    Article  Google Scholar 

  32. L.J. Zhao, Q. Jiang, Effects of applied magnetic field and pressures on the magnetic properties of nanocrystalline CoFe2O4 ferrite. J. Magn. Magn. Mater. 322(17), 2485–2487 (2010)

    Article  CAS  Google Scholar 

  33. P. Thakur, R. Sharma, M. Kumar, S. Katyal, P. Barman, V. Sharma, P. Sharma, Structural, morphological, magnetic and optical study of co-precipitated Nd3+ doped Mn-Zn ferrite nanoparticles. J. Magn. Magn. Mater. 479, 317–325 (2019)

    Article  CAS  Google Scholar 

  34. F. Li, Z. Tan, J. Xing, L. Jiang, B. Wu, J. Wu, D. Xiao, J. Zhu, Investigation of new lead free (1–x) KNNS–xBKZH piezo-ceramics with R-O–T phase boundary. J. Mater. Sci.: Mater. Electron. 28(12), 8803–8809 (2017)

    CAS  Google Scholar 

  35. B. Abdullah, D. Tahir, Quantitative analysis of X-Ray diffraction spectra for determine structural properties and deformation energy of Al Cu and Si. J. Phys.: Conf. 1317, 012052 (2019)

    Google Scholar 

  36. P. Thakur, R. Sharma, V. Sharma, P.B. Barman, M. Kumar, D. Barman, S.C. Katyal, P. Sharma, Gd3+ doped Mn-Zn soft ferrite nanoparticles: superparamagnetism and its correlation with other physical properties. J. Magnet. Magnetic Mater. 432, 208–217 (2017)

    Article  CAS  Google Scholar 

  37. P. Thakur, R. Sharma, M. Kumar, S.C. Katyal, P.B. Barman, V. Sharma, P. Sharma, Structural, morphological, magnetic and optical study of co-precipitated Nd3+ doped Mn-Zn ferrite nanoparticles. J. Magnet. Magnetic Mater. 479, 317–325 (2019)

    Article  CAS  Google Scholar 

  38. R. Sharma, P. Thakur, P. Sharma, V. Sharma, Ferrimagnetic Ni2+ doped Mg-Zn spinel ferrite nanoparticles for high density information storage. J. Alloys Compd 704, 7–17 (2017)

    Article  CAS  Google Scholar 

  39. Y. Qin, J. Zhang, W. Yao, C. Lu, S. Zhang, Domain configuration and thermal stability of (K0. 48Na0. 52)(Nb0. 96Sb0. 04) O3–Bi0. 50 (Na0. 82K0. 18) 0.50 ZrO3 piezoceramics with high d 33 coefficient. ACS Appl. Mater. Interfaces 8(11), 7257–7265 (2016)

    Article  CAS  Google Scholar 

  40. A. Kumar, S. Kumari, V. Kumar, P. Kumar, V.N. Thakur, A. Kumar, P.K. Goyal, A. Arya, A.L. Sharma, Synthesis, phase confirmation and electrical properties of (1–x) KNNS− xBNZSH lead-free ceramics. J. Mater. Sci.: Mater. Electron. 33(9), 6240–6252 (2022)

    CAS  Google Scholar 

  41. J. Tangsritrakul, P. Poolphol, W.J.F. Vittayakorn, Effect of thermal profile on a shift in phase transition temperature of Sb-doped KNN piezoceramic. Ferroelectrics 572(1), 27–35 (2021)

    Article  CAS  Google Scholar 

  42. K. Chen, J. Ma, C. Shi, W. Wu, B. Wu, Compounds, Enhanced temperature stability in high piezoelectric performance of (K, Na) NbO3-based lead-free ceramics trough co-doped antimony and tantalum. J. Alloys Compd. 852, 156865 (2021)

    Article  CAS  Google Scholar 

  43. D. Xue, Y. Liu, M. Shi, P. Wang, L. Zhang, G. Liu, Z. Chen, Y. Chen, Composition dependence of phase structure and piezoelectric properties in (0.98 − x)(K0.4Na0.6)NbO3–0.02CaZrO3–xBi0.5Na0.5HfO3 ternary ceramics. J. Mater. Sci.: Mater. Electron. 29(3), 2072–2079 (2018)

    CAS  Google Scholar 

  44. R. Mahbub, T. Fakhrul, M.F. Islam, Enhanced dielectric properties of tantalum oxide doped barium titanate based ceramic materials. Procedia Engineering 56, 760 (2013)

    Article  CAS  Google Scholar 

  45. J. Rani, K. Yadav, S. Prakash, Dielectric and magnetic properties of xCoFe2O4–(1− x)[0.5 Ba (Zr0. 2Ti0. 8) O3–0.5 (Ba0. 7Ca0. 3) TiO3]composites. Mater. Res. Bullet. 60, 367–375 (2014)

    Article  CAS  Google Scholar 

  46. S. Pareek, A.S. Prasad, S. Dolia, S. Kumar, A. Samariya, P. Sharma, M. Dhawan, K. Asokan, V. Saxena, K. Sharma, 2011 Dielectric Behavior of Bulk and Nanocrystalline Zn‐Mn Ferrite, AIP Conference Proceedings, American Institute of Physics, 1349, pp. 309–310.

  47. J. Fan, X.-W. Dong, Y. Song, K.-F. Wang, J.-M. Liu, X.-P. Jiang, Ferrimagnetism and abnormal spin—lattice coupling in dilute magnetic ferroelectric (Bi0 46Na0 46Ba0 08) TiO3: Co. Chinese Phy. B 20(2), 027502 (2011)

    Article  Google Scholar 

  48. M. Syed, G. Prasad, G.S. Kumar, Direct estimation of the activation energy and relaxation times from the anomalies observed in the dielectric AC and DC resistivity data using modified Lorentz equation. SN Appl. Sci. 2(6), 1–8 (2020)

    Google Scholar 

  49. S. Anwar, P. Sagdeo, N. Lalla, Crossover from classical to relaxor ferroelectrics in BaTi1− xHfxO3 ceramics. J. Phys.: Condens. Matter 18(13), 3455 (2006)

    CAS  Google Scholar 

  50. C. Zhu, Z. Cai, B. Luo, L. Guo, L. Li, X. Wang, High temperature lead-free BNT-based ceramics with stable energy storage and dielectric properties. J. Mater. Chem. A 8(2), 683–692 (2020)

    Article  CAS  Google Scholar 

  51. Y. Xue, R. Xu, Z. Wang, R. Gao, C. Li, G. Chen, X. Deng, W. Cai, C. Fu, Effect of magnetic phase on structural and multiferroic properties of Ni1− xZnxFe2O4/BaTiO3 composite ceramics. J. Electron. Mater. 48(8), 4806–4817 (2019)

    Article  CAS  Google Scholar 

  52. V. Vaithyanathan, K. Ugendar, J.A. Chelvane, K.K. Bharathi, S.S.R. Inbanathan, Structural and magnetic properties of Sn and Ti doped Co ferrite. J. Magnet. Magnetic. Mater. 382, 88–92 (2015)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

PT: writing-original draft. KG: methodology, writing-original draft. PT: methodology, validation, ASK: resources. VS: resources. PS: writing-review & editing. ML: conceptualization, data curation, supervision, Writing-review & editing.

Corresponding author

Correspondence to Madan Lal.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, P., Gupta, K., Thakur, P. et al. Improvement in the structural, dielectric, and magnetic properties of CFO-doped KNNS-BKT ceramics. J Mater Sci: Mater Electron 34, 311 (2023). https://doi.org/10.1007/s10854-022-09782-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09782-6

Navigation