Skip to main content
Log in

Effect of annealing treatment on electromagnetic shielding effectiveness of double-layer FeSiBCuNb/Cu composite strips

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Double-layer Fe73.5Si15.5B7Cu1Nb3/Cu composite strips were prepared by depositing copper films on the surface of Fe73.5Si15.5B7Cu1Nb3 amorphous strips using magnetron sputtering. The structure of Fe73.5Si15.5B7Cu1Nb3 amorphous strips and the double-layer composite strips before and after annealing was performed by X-ray diffraction. The electrical and magnetic properties of the composite strips were tested by Hall effect tester and impedance analyzer, respectively. Furthermore, the shielding effectiveness (SE) of the composite strips before and after annealing against electromagnetic waves in the range of 1–9 GHz was measured by vector network analyzer. The results show that the SE of amorphous strips annealed at 320 °C is better than that of 380 °C and 440 °C. The composite strip depositing copper film for 20 min and then annealed at 320 °C for 30 min has the highest SE of about 110.1 dB at 6.7 GHz, which is 28 dB higher than that of Fe73.5Si15.5B7Cu1Nb3 amorphous strips. Due to the addition of the conductivity (σ) of the strips sputtered copper film, the ability of this strip to reflect electromagnetic waves is improved. After annealing, the effective permeability of FeSiBCuNb/Cu composite strips increases, so the magnetic loss also increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this manuscript (and its supplementary information files) or can be available from the corresponding author on reasonable request.

References

  1. Z. Ma, J. Li, J. Zhang et al., Ultrathin, flexible, and high-strength Ni/Cu/metallic glass/Cu/Ni composite with alternate magneto-electric structures for electromagnetic shielding. J. Mater. Sci. Technol. 81, 43–50 (2021)

    Article  CAS  Google Scholar 

  2. D.O. Carpenter, Human disease resulting from exposure to electromagnetic fields1. Rev. Environ. Health 28(4), 159–172 (2013)

    Article  Google Scholar 

  3. R. Stam, S. Yamaguchi-Sekino, Occupational exposure to electromagnetic fields from medical sources. Ind. Health 56(2), 96–105 (2018)

    Article  Google Scholar 

  4. G. Redlarski, B. Lewczuk, A. Żak, et al., The influence of electromagnetic pollution on living organisms: historical trends and forecasting changes. BioMed Res. Int. (2015).

  5. P. Kumar, U.N. Maiti, A. Sikdar et al., Recent advances in polymer and polymer composites for electromagnetic interference shielding: review and future prospects. Polym. Rev. 59(4), 687–738 (2019)

    Article  CAS  Google Scholar 

  6. S.H. Lee, S. Yu, F. Shahzad et al., Highly anisotropic Cu oblate ellipsoids incorporated polymer composites with excellent performance for broadband electromagnetic interference shielding. Compos. Sci. Technol. 144, 57–62 (2017)

    Article  CAS  Google Scholar 

  7. J.H. Park, J.W. Lee, H.J. Choi et al., Electromagnetic interference shielding effectiveness of sputtered NiFe/Cu multi-layer thin film at high frequencies. Thin Solid Films 677, 130–136 (2019)

    Article  CAS  Google Scholar 

  8. O.A. Testov, A.E. Komlev, K.G. Gareev et al., Providing a specified level of electromagnetic shielding with nickel thin films formed by DC magnetron sputtering. Coatings 11(12), 1455 (2021)

    Article  CAS  Google Scholar 

  9. H. Zhao, L. Hou, Y. Lu, Electromagnetic shielding effectiveness and serviceability of the multilayer structured cuprammonium fabric/polypyrrole/copper (CF/PPy/Cu) composite. Chem. Eng. J. 297, 170–179 (2016)

    Article  CAS  Google Scholar 

  10. M.H. Al-Saleh, G.A. Gelves, U. Sundararaj, Copper nanowire/polystyrene nanocomposites: lower percolation threshold and higher EMI shielding. Compos. A Appl. Sci. Manuf. 42(1), 92–97 (2011)

    Article  Google Scholar 

  11. D.X. Yan, H. Pang, B. Li et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Func. Mater. 25(4), 559–566 (2015)

    Article  CAS  Google Scholar 

  12. Z. Wang, B. Mao, Q. Wang et al., Ultrahigh conductive copper/large flake size graphene heterostructure thin-film with remarkable electromagnetic interference shielding effectiveness. Small 14(20), 1704332 (2018)

    Article  Google Scholar 

  13. G.M. Weng, J. Li, M. Alhabeb et al., Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater. 28(44), 1803360 (2018)

    Article  Google Scholar 

  14. J. Zhang, J. Li, G. Tan et al., Thin and flexible Fe–Si–B/Ni–Cu–P metallic glass multilayer composites for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces. 9(48), 42192–42199 (2017)

    Article  CAS  Google Scholar 

  15. J. Luo, L. Wang, X. Huang et al., Mechanically durable, highly conductive, and anticorrosive composite fabrics with excellent self-cleaning performance for high-efficiency electromagnetic interference shielding. ACS Appl. Mater. Interfaces. 11(11), 10883–10894 (2019)

    Article  CAS  Google Scholar 

  16. I.R. Radulescu, L. Surdu, B. Mitu et al., Conductive textile structures and their contribution to electromagnetic shielding effectiveness. Industria Textila. 71(5), 432–437 (2020)

    Article  CAS  Google Scholar 

  17. B. Zhao, C.B. Park, Tunable electromagnetic shielding properties of conductive poly (vinylidene fluoride)/Ni chain composite films with negative permittivity. J. Mater. Chem. C 5(28), 6954–6961 (2017)

    Article  CAS  Google Scholar 

  18. S. Li, Z. Xu, Y. Dong et al., Ni@ nylon mesh/PP composites with a novel tree-ring structure for enhancing electromagnetic shielding. Compos Part A 131, 105798 (2020)

    Article  CAS  Google Scholar 

  19. F. Shahzad, M. Alhabeb, C.B. Hatter et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016)

    Article  CAS  Google Scholar 

  20. A. Iqbal, F. Shahzad, K. Hantanasirisakul et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369(6502), 446–450 (2020)

    Article  CAS  Google Scholar 

  21. H. Zhao, Y. Huang, Y. Han et al., Flexible and lightweight porous polyether sulfone/Cu composite film with bidirectional differential structure for electromagnetic interference shielding and heat conduction. Chem. Eng. J. 440, 135919 (2022)

    Article  CAS  Google Scholar 

  22. O. Gutfleisch, M.A. Willard, E. Brück et al., Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv. Mater. 23(7), 821–842 (2011)

    Article  CAS  Google Scholar 

  23. J. Lee, Y. Liu, Y. Liu et al., Ultrahigh electromagnetic interference shielding performance of lightweight, flexible, and highly conductive copper-clad carbon fiber nonwoven fabrics. J. Mater. Chem. C. 5(31), 7853–7861 (2017)

    Article  CAS  Google Scholar 

  24. X. Ma, Q. Zhang, Z. Luo et al., A novel structure of ferro-aluminum based sandwich composite for magnetic and electromagnetic interference shielding. Mater. Des. 89, 71–77 (2016)

    Article  CAS  Google Scholar 

  25. F. Qin, H.X. Peng, Ferromagnetic microwires enabled multifunctional composite materials. Prog. Mater Sci. 58(2), 183–259 (2013)

    Article  CAS  Google Scholar 

  26. Z. Stokłosa, J. Rasek, P. Kwapuliński et al., Magnetic, electrical and plastic properties of Fe76Nb2Si13B9, Fe75Ag1Nb2Si13B9 and Fe75Cu1Nb2Si13B9 amorphous alloys. J. Alloys Compd. 509(37), 9050–9054 (2011)

    Article  Google Scholar 

  27. J. Xu, Y. Yang, Q. Yan et al., Softening and magnetic properties of ultrahigh Fe content FeSiBCuPC nanocrystalline alloy induced by low-pressure stress annealing. Scr. Mater. 179, 6–11 (2020)

    Article  CAS  Google Scholar 

  28. M. Yu, C. Yang, X. Bian et al., Application of Fe78Si9B13 amorphous particles in magnetorheological fluids. RSC Adv. 6(27), 22511–22518 (2016)

    Article  CAS  Google Scholar 

  29. B.F. Zou, T.D. Zhou, J. Hu, Effect of amorphous evolution on structure and absorption properties of FeSiCr alloy powders. J. Magn. Magn. Mater. 335, 17–20 (2013)

    Article  CAS  Google Scholar 

  30. Y. Yang, M. Li, Y. Wu et al., Nanoscaled self-alignment of Fe3O4 nanodiscs in ultrathin rGO films with engineered conductivity for electromagnetic interference shielding. Nanoscale 8(35), 15989–15998 (2016)

    Article  CAS  Google Scholar 

  31. L.D.L.S. Valladares, D.H. Salinas, A.B. Dominguez et al., Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates. Thin Solid Films 520(20), 6368–6374 (2012)

    Article  CAS  Google Scholar 

  32. B. Zhao, X. Guo, W. Zhao et al., Facile synthesis of yolk–shell Ni@ void@ SnO2 (Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Res. 10(1), 331–343 (2017)

    Article  CAS  Google Scholar 

  33. X. Lyu, Z. Yang, M. Li et al., Facile chemical synthesis of amorphous FeB alloy nanoparticles and their superior electromagnetic wave absorption performance. J. Phys. Chem. Solids 126, 143–149 (2019)

    Article  Google Scholar 

  34. P. Liu, Y. Wang, G. Zhang, et al., Hierarchical engineering of double‐Shelled nanotubes toward hetero‐interfaces induced polarization and microscale magnetic interaction. Adv. Funct. Mater. 2022: 2202588.

  35. P. Liu, S. Gao, G. Zhang et al., Hollow engineering to Co@ N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31(27), 2102812 (2021)

    Article  CAS  Google Scholar 

  36. P. Liu, T. Gao, W. He et al., Electrospinning of hierarchical carbon fibers with multi-dimensional magnetic configurations toward prominent microwave absorption. Carbon 202, 244–253 (2023)

    Article  CAS  Google Scholar 

  37. H. Xu, G. Zhang, Y. Wang et al., Heteroatoms-doped carbon nanocages with enhanced dipolar and defective polarization toward light-weight microwave absorbers. Nano Res. 15(10), 8705–8713 (2022)

    Article  CAS  Google Scholar 

  38. H. Xu, G. Zhang, Y. Wang et al., Size-dependent oxidation-induced phase engineering for MOFs derivatives via spatial confinement strategy toward enhanced microwave absorption. Nano-Micro Lett. 14, 102 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 52071089) and Basic and Applied Basic Research Foundation of Guangdong Province (Grant No. 2019B030302010).

Funding

Funding was provided by National Natural Science Foundation of China (Grant Number 52071089).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, WX and YY; methodology, WX, JQ, and YZ; experiments, WX, GZ and YZ; characterization, WX, HO, HZ and YW; writing—original draft preparation, WX and YY; writing—review and editing, WX and YY; supervision, YY; project administration, WX; funding acquisition, YY All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yuanzheng Yang.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Qi, J., Zhang, Y. et al. Effect of annealing treatment on electromagnetic shielding effectiveness of double-layer FeSiBCuNb/Cu composite strips. J Mater Sci: Mater Electron 34, 376 (2023). https://doi.org/10.1007/s10854-022-09740-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09740-2

Navigation