Skip to main content
Log in

Low-hysteresis perovskite solar cells based on a spray-coated electron transport layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

JV hysteresis brings great challenges to the performance and stable measurement of perovskite solar cells (PSCs). One of the factors affecting the JV hysteresis of PSCs is the morphology and optoelectronic properties of the electron transport layer (ETL). In this study, PSC devices with negligible hysteresis effects are obtained using a spray-coated tin oxide film as the ETL. Compared with PSC devices using spin-coated ETLs, devices containing spray-coated ETLs retain a lower density of defect states and better electron extraction efficiency. Therefore, the hysteresis effect of the PSC devices using the spray-coated ETL is significantly reduced. Then, through a simple substrate preheating method, the uniformity of the sprayed tin oxide film is improved, and the ETL/perovskite interface is promoted. The PSCs with good reproducibility deliver a hysteresis index of 0.029. This work reveals a new method for the large-scale fabrication of perovskite solar cells with a low hysteresis effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author upon reasonable request.

References

  1. Q. Liang, K. Liu, M. Sun, Z. Ren, P.W.K. Fong, J. Huang, M. Qin, Z. Wu, D. Shen, C.-S. Lee, J. Hao, X. Lu, B. Huang, G. Li, Manipulating crystallization kinetics in high-performance blade-coated Perovskite Solar cells via cosolvent-assisted phase transition. Adv. Mater. 34, 2200276 (2022)

    Article  CAS  Google Scholar 

  2. M.A. Uddin, P.J.S. Rana, Z. Ni, X. Dai, Z. Yu, Z. Shi, H. Jiao, J. Huang, Blading of conformal electron-transport layers in p–i–n perovskite solar cells. Adv. Mater. (2022). https://doi.org/10.1002/adma.202202954

    Article  Google Scholar 

  3. J. Su, H. Cai, J. Yang, X. Ye, R. Han, J. Ni, J. Li, J. Zhang, Perovskite ink with an ultrawide processing window for efficient and scalable perovskite solar cells in ambient air. ACS Appl. Mater. Interfaces 12, 3531–3538 (2020)

    Article  CAS  Google Scholar 

  4. J. Su, H. Cai, X. Ye, X. Zhou, J. Yang, D. Wang, J. Ni, J. Li, J. Zhang, Efficient perovskite solar cells prepared by hot air blowing to ultrasonic spraying in ambient air. ACS Appl. Mater. Interfaces 11, 10689–10696 (2019)

    Article  CAS  Google Scholar 

  5. J. Su, X. Zheng, H. Guo, S. Jiang, H. Tian, J. Yang, X. Ye, H. Cai, J. Ni, J. Qiu, J. Zhang, Fully spray-coated perovskite solar minimodules via a vacuum-flash assisted solution process. J. Electron. Mater. 51, 2396–2405 (2022)

    Article  CAS  Google Scholar 

  6. H. Eggers, F. Schackmar, T. Abzieher, Q. Sun, U. Lemmer, Y. Vaynzof, B.S. Richards, G. Hernandez-Sosa, U.W. Paetzold, Inkjet-printed micrometer-thick perovskite solar cells with large columnar grains. Adv. Energy Mater. 10, 1903184 (2020)

    Article  CAS  Google Scholar 

  7. C. Wang, J. Wu, X. Liu, S. Wang, Z. Yan, L. Chen, G. Li, X. Zhang, W. Sun, Z. Lan, High-effective SnO2-based perovskite solar cells by multifunctional molecular additive engineering. J. Alloys Compd. 886, 161352 (2021)

    Article  CAS  Google Scholar 

  8. D.-H. Kang, N.-G. Park, On the current–voltage hysteresis in perovskite solar cells: dependence on perovskite composition and methods to remove hysteresis. Adv. Mater. 31, 1805214 (2019)

    Article  Google Scholar 

  9. B. Chen, M. Yang, S. Priya, K. Zhu, Origin of J–V hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 7, 905–917 (2016)

    Article  CAS  Google Scholar 

  10. J. Su, X. Zheng, X. Lang, R. Han, H. Cai, J. Ni, J. Zhang, J. Qiu, Effect of precursor solution ageing time on the photovoltaic performance of perovskite solar cells. Funct. Mater. Lett. 14, 2151025 (2021)

    Article  CAS  Google Scholar 

  11. G.-J.A.H. Wetzelaer, M. Scheepers, A.M. Sempere, C. Momblona, J. Ávila, H.J. Bolink, Trap-assisted non-radiative recombination in organic–inorganic perovskite solar cells. Adv. Mater. 27, 1837–1841 (2015)

    Article  CAS  Google Scholar 

  12. W.A. Laban, L. Etgar, Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Environ. Sci. (2013). https://doi.org/10.1039/C8TA00526E

    Article  Google Scholar 

  13. M. Lee Michael, J. Teuscher, T. Miyasaka, N. Murakami Takurou, J. Snaith Henry, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012)

    Article  CAS  Google Scholar 

  14. D.H. Song, M.H. Jang, M.H. Lee, J.H. Heo, J.K. Park, S.-J. Sung, D.-H. Kim, K.-H. Hong, S.H. Im, A discussion on the origin and solutions of hysteresis in perovskite hybrid solar cells. J. Phys. D 49, 473001 (2016)

    Article  Google Scholar 

  15. J.J. Choi, X. Yang, Z.M. Norman, S.J.L. Billinge, J.S. Owen, Structure of methylammonium lead Iodide within mesoporous titanium dioxide: active material in high-performance perovskite solar cells. Nano Lett. 14, 127–133 (2014)

    Article  CAS  Google Scholar 

  16. P. Liu, W. Wang, S. Liu, H. Yang, Z. Shao, Fundamental understanding of photocurrent hysteresis in perovskite solar cells. Adv. Energy Mater. 9, 1803017 (2019)

    Article  Google Scholar 

  17. J. Yi, J. Zhuang, X. Liu, H. Wang, Z. Ma, D. Huang, Z. Guo, H. Li, Triphenylamine hydrophobic surface prepared by low-temperature solution deposition for stable and high-efficiency SnO2 planar perovskite solar cells. J. Alloys Compd. 830, 154710 (2020)

    Article  CAS  Google Scholar 

  18. J. Jia, J. Dong, J. Wu, H. Wei, B. Cao, Combustion procedure deposited SnO2 electron transport layers for high efficient perovskite solar cells. J. Alloys Compd. 844, 156032 (2020)

    Article  CAS  Google Scholar 

  19. U.B. Qasim, H.B. Qasim, M.M. Saeed, M.H. Riaz, H. Imran, Investigating physical origin of dominant hysteresis phenomenon in perovskite solar cell. J. Mater. Sci.: Mater. Electron 32, 5274–5285 (2021)

    CAS  Google Scholar 

  20. M. Yu, H.-Y. Wang, J.-S. Zhao, Y. Qin, J.-P. Zhang, X.-C. Ai, The influence of fullerene on hysteresis mechanism in planar perovskite solar cells. Chem. Phys. Lett. 750, 137443 (2020)

    Article  CAS  Google Scholar 

  21. A. Hosseinmardi, A. Moshaii, M. Khodabandeh, Z. Bagheri, S. Abbasian, Study on hysteresis in perovskite solar cells fabricated using different solvents under ambient conditions. J. Mater. Sci.: Mater. Electron. 31, 16671–16677 (2020)

    CAS  Google Scholar 

  22. A. Kumar, Numerical modelling of ion-migration caused hysteresis in perovskite solar cells. Opt. Quant. Electron. 53, 166 (2021)

    Article  CAS  Google Scholar 

  23. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015)

    Article  CAS  Google Scholar 

  24. V.M. Le Corre, E.A. Duijnstee, O. El Tambouli, J.M. Ball, H.J. Snaith, J. Lim, L.J.A. Koster, Revealing charge carrier mobility and defect densities in metal halide perovskites via space-charge-limited current measurements. ACS Energy Lett. 6, 1087–1094 (2021)

    Article  Google Scholar 

  25. C. Zhang, Z. Li, X. Deng, B. Yan, Z. Wang, X. Chen, Z. Sun, S. Huang, Enhancing photovoltaic performance of perovskite solar cells utilizing germanium nanoparticles. Sol. Energy 188, 839–848 (2019)

    Article  CAS  Google Scholar 

  26. Y. Zhang, M. Sun, N. Zhou, B. Huang, H. Zhou, Electronic tunability and mobility anisotropy of Quasi-2D Perovskite single crystals with varied spacer cations. J. Phys. Chem. Lett. 11, 7610–7616 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Foundation of Jiangsu Provincial Education Department (Grant No. 21KJB510010), the Natural Science Foundation of Jiangsu Province (Grant No. BK20220624, BK20220620) and the Changzhou Sci&Tech Program (Grant No. CJ20210127).

Funding

This work was supported by the Scientific Research Foundation of Jiangsu Provincial Education Department (Grant No. 21KJB510010), the Natural Science Foundation of Jiangsu Province (Grant No. BK20220624, BK20220620) and the Changzhou Sci&Tech Program (Grant No. CJ20210127).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by XZ, JS and JQ. The first draft of the manuscript was written by XZ and JS, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jian Su or Jianhua Qiu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Su, J., Liu, S. et al. Low-hysteresis perovskite solar cells based on a spray-coated electron transport layer. J Mater Sci: Mater Electron 34, 172 (2023). https://doi.org/10.1007/s10854-022-09690-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09690-9

Navigation