Skip to main content
Log in

Structural, dielectric, and magnetic properties of Dy-substituted BiFeO3 multiferroic ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of Dy3+ ion substitution on structural, dielectric, and magnetic behavior of BiFeO3 ceramics has been studied which was prepared via the solid-state route. Structural analysis reveals that the replacement of the Dy3+ ion with that of Bi3+ results in a phase transformation from rhombohedral (x = 0.05) to mixed orthorhombic and rhombohedral (x = 0.10, 0.15, 0.20) along with a reduction in crystallite size. At 463 K, the anomalous behavior in dielectric constant was observed, which indicates high temperature transient interaction between oxygen vacancies and the Fe3+/Fe2+ ions. The complex nonlinear Cole–Cole fitted plots in impedance study revealed the presence of grains with finite grain boundaries, and electrode effects. All the prepared ceramic samples have been found to exhibit electric relaxation of non-Debye type with a negative (− ve) temperature coefficient of resistance, analogous to a semiconductor behavior. The observation of M-H loops shows the magnetic properties at room temperature which indicates that increasing the Dy substitution results in an effective modification of the spiral spin structure of BiFeO3, leading to improved net magnetization. The maximum values of remanent magnetization (Mr = 0.065573 emu/g) and coercive field (Hc = 170.66 Oe) were obtained for the sample x = 0.20. Hence, the addition of the rare earth element Dy improves the magnetic and dielectric properties of pure BiFeO3, making it a suitable choice for data storage media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be available upon request.

References

  1. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006)

    Article  CAS  Google Scholar 

  2. A. Somvanshi, S. Husain, S. Manzoor, N. Zarrin, N. Ahmad, B. Want, W. Khan, Tuning of magnetic properties and multiferroic nature: case study of cobalt-doped NdFeO3. Appl. Phys. A 127, 174 (2021)

    Article  CAS  Google Scholar 

  3. S. Pattanayak, R.N.P. Choudhary, P.R. Das, S.R. Shannigrahi, Effect of Dy-substitution on structural, electrical and magnetic properties of multiferroic BiFeO3 ceramics. Ceram. Int. 40, 7983–7991 (2014)

    Article  CAS  Google Scholar 

  4. V. Koval, I. Skorvanek, M. Reece, L. Mitoseriu, H. Yan, Effect of dysprosium substitution on crystal structure and physical properties of multiferroic BiFeO3 ceramics. J. Eur. Ceram. Soc. 34, 641–651 (2014)

    Article  CAS  Google Scholar 

  5. O. Singh, A. Agarwal, A. Das, S. Sanghi, J. Singh, Variation of crystal structure, magnetisation and dielectric properties of Nd and Ba co-doped BiFeO3 multiferroics. Int. J. Appl. Ceram. Technol. (2018). https://doi.org/10.1111/ijac.13052

    Article  Google Scholar 

  6. O. Singh, A. Kumar, K. Kumar, A. Agarwal, S. Sanghi, Sintering time dependent structural and magnetic phase transformations in Pr doped BiFeO3 multiferroics. J. Magn. Magn. Mater. S0304–8853, 32379–32389 (2021)

    Google Scholar 

  7. O. Singh, A. Agarwal, A. Das, S. Sanghi, A. Jindal, Evolution of structural and magnetic phases in Nd doped BiFeO3 multiferroics with sintering time. J. Magn. Magn. Mater. 442, 200–207 (2017)

    Article  CAS  Google Scholar 

  8. K. Kaswan, A. Agarwal, S. Sanghi, M. Rangi, S. Jangra, O. Singh, Rietveld refinement and dielectric studies of Bi0.8Ba0.2FeO3 ceramic. AIP Proc. 1731, 140003 (2016). https://doi.org/10.1063/1.4948169

    Article  Google Scholar 

  9. A.K. Sinha, B. Bhushan, Jagannath, R.K. Sharma, S. Sen, B.P. Mandal, S.S. Meena, P. Bhatt, C.L. Prajapat, A. Priyam, S.K. Mishra, S.C. Gadkari, Enhanced dielectric, magnetic and optical properties of Cr-doped BiFeO3 multiferroic nanoparticles synthesized by sol-gel route. Results Phys. 13, 102299–10 (2019)

    Article  Google Scholar 

  10. S.J. Kim, S.H. Han, H.G. Kim, A.Y. Kim, J.S. Kim, C.I. Cheon, Multiferroic properties of Ti-doped BiFeO3 ceramics. J. Korean Phy. Soc. 56, 439–442 (2010)

    Article  CAS  Google Scholar 

  11. M.K. Mishra, R.N. Mahaling, Single or both site doped BiFeO3, Which is better candidate for profound electronic device applications? Chin. J. Phys. 56, 965–973 (2018)

    Article  CAS  Google Scholar 

  12. S. Jangra, S. Sanghi, A. Agarwal, M. Rangi, K. Kaswan, S. Khasa, Improved structural, dielectric and magnetic properties of Ca2+ and Nb5+cosubstituted BiFeO3 multiferroics. J. Alloys Compd. 722, 606–616 (2017)

    Article  CAS  Google Scholar 

  13. S. Jangra, S. Sanghi, A. Agarwal, M. Rangi, K. Kaswan, Effects of Nd3+ and high-valence Nb5+ co-doping on the structural, dielectric and magnetic properties of BiFeO3multiferroics. Ceram. Inter. 44, 7683–7693 (2018)

    Article  CAS  Google Scholar 

  14. A. Sen, Md.K. Hasan, Z. Islam, Md.R. Al Hassan, T. Zaman, M.A. Matin, F. Gulshan, Influence of Ba and Mo co-doping on the structural, electrical, magnetic and optical properties of BiFeO3 ceramics. Mater. Res. Exp. 7, 016312–18 (2020)

    Article  CAS  Google Scholar 

  15. Y. Li, J. Yu, J. Li, C. Zheng, Y. Wu, Y. Zhao, M. Wang, Y. Wang, Influence of Dy-doping on ferroelectric and dielectric properties in Bi1-xDyxFeO3 ceramics. J. Mater. Sci.: Mater. Electron 22, 323–327 (2011)

    CAS  Google Scholar 

  16. P.C. Sati, M. Arora, S. Chauhan, M. Kumar, Effect of Dy substitution on structural, magnetic and optical properties of BiFeO3 ceramics. J. Phys. Chem. Solids 75, 105–108 (2014)

    Article  Google Scholar 

  17. G. Dhir, P. Uniyal, N.K. Verma, Effect of particle size on magnetic and dielectric properties of nanoscale Dy-doped BiFeO3. J. Supercond. Nov. Magn. 27, 1569–1577 (2014)

    Article  CAS  Google Scholar 

  18. N. Jeon, D. Rout, I.W. Kim, S.J.L. Kang, Enhanced multiferroic properties of single phase BiFeO3 bulk ceramics by Ho doping. Appl. Phys. Lett. 98, 072901 (2011)

    Article  Google Scholar 

  19. J.A. Kerr, In CRC Handbook of Chemistry and Physics, 81st edn. (CRC Press, Boca Raton, Florida, USA, 2000)

    Google Scholar 

  20. P. Sharma, P.K. Diwan, O.P. Pandey, Impact of environment on the kinetics involved in the solid-state synthesis of bismuth ferrite. Mater. Chem. and Phys. 233, 171–179 (2019)

    Article  CAS  Google Scholar 

  21. M. SelbachSverre, Mari-Ann. Einarsrud, Tor Grande, On the thermodynamic stability of BiFeO3. Chem. Mater. 21, 169–173 (2009)

    Article  Google Scholar 

  22. N. Ahmad, S. Khan, Effect of (Mn-Co) co-doping on the structural, morphological, optical, photoluminescence and electrical properties of SnO2. J. Alloys Compd. 720, 502–509 (2017)

    Article  CAS  Google Scholar 

  23. F.Z. Qian, J.S. Jiang, S.Z. Guo, D.M. Jiang, W.G. Zhang, Multiferroic properties of Bi1-xDyxFeO3nanoparticles. J. Appl. Phys. 106, 084312 (2009)

    Article  Google Scholar 

  24. G.S. Lotey, N.K. Verma, Magnetodielectric properties of rare earth metal-doped BiFeO3 nanoparticles. J. Mater. Sci.:Mater. Electron 24, 3723–3729 (2013)

    CAS  Google Scholar 

  25. X. Zhang, Y. Sui, X. Wang, Y. Wang, Z. Wang, Effect of Eu substitution on the crystal structure and multiferroic properties of BiFeO3. J. Alloys Compd. 507, 157–161 (2010)

    Article  CAS  Google Scholar 

  26. V.A. Khomchenko, M. Kopcewicz, A.M. Lopes, Y.G. Pogorelov, J.P. Araujo, J.M. Vieira, A.L. Kholkin, Intrinsic nature of the magnetization enhancement in heterovalently doped Bi1− xAxFeO3 (A= Ca, Sr, Pb, Ba) multiferroics. J. Phys. D: Appl. Phys. 41, 102003 (2008)

    Article  Google Scholar 

  27. G.Y. Chen, G.F. Bi, L. Song, Y.K. Weng, D.F. Pan, Y.C. Li, S. Dong, T. Tang, J.M. Liu, J.G. Wan, Magnetization switching in the BiFe0.9Mn0.1O3 thin films modulated by resistive switching process. Appl. Phys. Lett. 109, 112903 (2016)

    Article  Google Scholar 

  28. Y. Gu, J. Zhao, W. Zhanga, H. Zheng, L. Liuc, W. Chen, Structural transformation and multiferroic properties of Sm and Ticodoped BiFeO3 ceramics with Fe vacancies. Ceram. Int. 43, 14666–14671 (2017)

    Article  CAS  Google Scholar 

  29. C.F. Chung, J.P. Lin, J.M. Wu, Influence of Mn and Nb dopants on electric properties of chemical-solution-deposited BiFeO3 films. Appl. Phys. Lett. 88, 242909 (2006)

    Article  Google Scholar 

  30. N. Ahmad, S. Khan, M. Mohsin, N. Ansari, Optical, dielectric and magnetic properties of Mn doped SnO2 diluted magnetic semiconductors. Ceram. Int. 44, 15972–15980 (2018)

    Article  CAS  Google Scholar 

  31. A.K. Jonscher, A new understanding of the dielectric relaxation of solids. J. Mater. Sci. 16, 2037–2060 (1981)

    Article  CAS  Google Scholar 

  32. L. Thansanga, A. Shukla, N. Kumar, R.N.P. Choudhary, Study of effect of Dy substitution on structural, dielectric, impedance and magnetic properties of bismuth ferrite. J. Mater. Sci.: Mater Electron. 31, 10006–10017 (2020)

    CAS  Google Scholar 

  33. C.G. Koop, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121–124 (1951)

    Article  Google Scholar 

  34. Reetu, A. Agarwal, S. Sanghi, Ashima, Rietveld analysis, dielectric and magnetic properties of Sr and Ti co-doped BiFeO3 multiferroic. J. Appl. Phys. 110, 073909 (2011)

    Article  Google Scholar 

  35. N. Raengthon, C. McCue, D.P. Cann, Relationship between tolerance factor and temperature coefficient of permittivity of temperature-stable high permittivity BaTiO3–Bi(Me)O3compounds. J. Adv. Dielectr. 6, 1650002 (2016)

    Article  CAS  Google Scholar 

  36. V.L. Mathe, R.B. Kamble, Anomalies in electrical and dielectric properties of nanocrystalline Ni–Co spinel ferrite. Mater. Res. Bull. 43, 2160–2165 (2008)

    Article  CAS  Google Scholar 

  37. A. Verma, O.P. Thakur, C. Prakash, T.C. Goel, R.G. Mendiratta, Temperature dependence of electrical properties of nickel–zinc ferrites processed by the citrate precursor technique. Mater. Sci. Eng. B 116, 1–6 (2005)

    Article  Google Scholar 

  38. K. Min, F. Huang, Y. Jin, X. Lu, H. Wu, J. Zhu, Control of oxygen vacancies and their kinetic behaviors via reversible oxygen loss in BiFeO3 ceramics. J. Phys. D: Appl. Phys. 48, 445301 (2015)

    Article  Google Scholar 

  39. K. Ishikawa, K. Yoshikawa, N. Okada, Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles. Phys Rev. B. 37, 5852–5855 (1988)

    Article  CAS  Google Scholar 

  40. M. Kumar, S. Shankar, F. Brijmohan, S. Kumar, O.P. Thakur, A.K. Ghosh, Impedance spectroscopy and conductivity analysis of multiferroic BFO–BT solid solutions. Phys. Lett. A 381, 379–386 (2017)

    Article  CAS  Google Scholar 

  41. B. Yeum, Z. Simpwin, Version 2.00, Echem Software Ann Arbor, MI, USA

  42. W. Choi, H.C. Shin, J.M. Kim, J.Y. Choi, W.S. Yoon, Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries. J. Electrochem. Sci. Technol. 11, 1–13 (2020)

    Article  CAS  Google Scholar 

  43. I. Ilic Nikola, D. Bobic Jelena, S. StojadinoviBojan, S. DzunuzoviAdis, M. VijatoviPetrovi Mirjana, D. DohceviMitrovi Zorana, D. Stojanovic Biljana, Improving of the electrical and magnetic properties of BiFeO3 by doping with yttrium. Mater. Res. Bull. 77, 60–69 (2016)

    Article  Google Scholar 

  44. C.H. Yang, D. Kan, I. Takeuchi, V. Nagarajan, J. Seidel, Doping BiFeO3: approaches and enhanced functionality. Phys. Chem. Chem. Phys. 14, 15953–15962 (2012)

    Article  CAS  Google Scholar 

  45. M.N. Van, T.D. Viet, Dopant effects on the structural, optical and electromagnetic properties in multiferroic Bi1-xYxFeO3 ceramics. J. Alloys Compd. 505, 619–622 (2010)

    Article  Google Scholar 

  46. S. Zhang, W. Luo, D. Wang, Y. Ma, Phase evolution and magnetic property of Bi1-xDyxFeO3. Ceram. Mater. Lett. 63, 1820 (2009)

    Article  CAS  Google Scholar 

  47. K.S. Nalwa, A. Garg, Phase evolution, magnetic and electrical properties in Sm-doped bismuth ferrite. J. Appl. Phys. 103, 044101 (2008)

    Article  Google Scholar 

  48. H. Tuysuz, E.L. Salabas, C. Weidenthaler, F. Schuth, Synthesis and magnetic investigation of ordered mesoporous two-line ferrihydrite. J. Am. Chem. Soc. 130, 280–287 (2008)

    Article  Google Scholar 

  49. C. Lan, Y. Jiang, S. Yang, Magnetic properties of La and (La, Zr) doped BiFeO3 ceramics. J. Mater. Sci. 46, 734 (2011)

    Article  CAS  Google Scholar 

  50. R. Rai, S.K. Mishra, N.K. Singh, S. Sharma, A.L. Kholkin, Preparation, structures, and multiferroic properties of single-phase BiRFeO3, R= La and Er ceramics. Curr. Appl. Phys. 11, 508 (2011)

    Article  Google Scholar 

  51. S.S. Chowdhury, A.H. Mostafa Kamal, R. Hossain, M. Hasan, M.F. Islam, B. Ahmmad, M.A. Basith, Dy doped BiFeO3: a bulk ceramic with improved multiferroic properties compared to nano counterparts. Ceram. Int. 43, 9191–9199 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Science and Technology (DST), Government of India, for providing the XRD facility through the FIST scheme. S.S. is also grateful to the DST, New Delhi, for funding under the PURSE Program (SR/PURSE Phase 2/40 (G)).

Funding

This study was supported by DST India (Grant No. SR/PURSE Phase 2/40 (G)).

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed in conceptualization and design of problem. Material preparation, data collection and analysis, and the first original draft has been written by SR. OS has done the data curation, software validation, and manuscript edition work. SK and PS has furnished the visualization scheme and formal analysis work. AA has done funding acquisition and supervision job. Resource management, review, and writing of the final manuscript have been done by SS. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Sujata Sanghi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, S., Singh, O., Kaushik, S. et al. Structural, dielectric, and magnetic properties of Dy-substituted BiFeO3 multiferroic ceramics. J Mater Sci: Mater Electron 34, 258 (2023). https://doi.org/10.1007/s10854-022-09680-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09680-x

Navigation