Skip to main content
Log in

Dielectric study of pure CuO nanoparticles prepared through exploding wire technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The CuO nanoparticles prepared by high yielding, eco-friendly, non-hazardous, cost-effective, and simple Exploding Wire Technique and subsequently subjected to annealing at 900 °C for 7 h were analyzed through a series of characterization techniques. X-ray diffraction data analysis was performed to determine the crystallite phase and size of CuO at 900 °C. The direct current (DC) electrical attributes of synthesized nanoparticles were measured using two-probe system in the span of 300–512 K. The activation drive for hopping of charge carriers, drift mobility, and carrier density were evaluated through DC investigation. The traits of dielectric responses like dielectric constant or relative permittivity (ε′), tangent loss (tan δ), dielectric loss (ε″) and alternating current (AC) conductivity (σAC) were investigated at different thermal states in the frequency span of 10–105 Hz. The surge in AC conductivity with frequency, as detected in the present case, represents typical behavior of spinel ferrite. The alteration in relative permittivity with frequency could be acceptably explicated through two-layer model formulated on space charge polarization. The dielectric properties at various frequencies were investigated in the temperature span of 300–500 K. The reduction in DC resistivity along with the surge in AC conductivity with temperature acknowledged the semiconducting essence of synthesized CuO nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.P. Singh, A.K. Ojha, O.N. Srivastava, J. Phys. Chem. C 113, 3409–3418 (2009)

    Article  CAS  Google Scholar 

  2. D. Tahir, S. Tougaard, J. Phys.: Condens. Matter 24, 175002 (2012)

    Google Scholar 

  3. Y. Liu, L. Liao, J. Li, C. Pan, J. Phys. Chem. C 111, 5050–5056 (2007)

    Article  CAS  Google Scholar 

  4. X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Leiber, Nature 409, 66–69 (2001)

    Article  CAS  Google Scholar 

  5. L. Schmidt-Mende, J.L.M. Manus-Driscoll, Mater. Today 10, 40–48 (2007)

    Article  CAS  Google Scholar 

  6. P. Thangbai, S. Tangwanchatoen, T. Yamwong, S. Maensiri, J. Phys. Condens. Matter 20, 395227 (2008)

    Article  Google Scholar 

  7. K. Siddique, B.K. Nath, S. Karmakar, Int. J. Nanosci. 12(5), 1350036 (2013)

    Article  Google Scholar 

  8. Z. Jia, L. Yue, Y. Zheng, Z. Xu, Mater. Res. Bull. 43, 2434–2440 (2008)

    Article  CAS  Google Scholar 

  9. J. Koshy, S. Samuel, A. Chandran, P. Vijayan, K.C. George, IJCPS 4(2), 71–77 (2015)

    CAS  Google Scholar 

  10. S. Seung-Deok, J. Yun-Ho, L. Seng-Hun, S. Hyun-Woo, K. Dong-Wan, Nanoscale Res. Lett 6, 397 (2011)

    Article  Google Scholar 

  11. X. Zhang, D. Zhang, X. Ni, H. Zheng, Solid-State Electron. 52, 245–248 (2008)

    Article  CAS  Google Scholar 

  12. X.Y. Chen, H. Cui, P. Liu, G.W. Yang, App. Phys. Lett. 90, 183118 (2007)

    Article  Google Scholar 

  13. Q.L.Y. Liang, H. Liu, J. Hong, Z. Xub, Mater. Chem. Phys. 98, 519–522 (2006)

    Article  Google Scholar 

  14. D.I. Son, C.H. You, T.W. Kim, App. Surf. Sci. 255, 8794–8797 (2009)

    Article  CAS  Google Scholar 

  15. S.-L. Cheng, M.-F. Chen, Nanoscale Res. Lett. 7, 119 (2012)

    Article  Google Scholar 

  16. R.P. Wijesundera, M. Hidaka, K. Koga, K. Sakai, W. Siripda, Thin Solid Films 500, 241–246 (2006)

    Article  CAS  Google Scholar 

  17. A.P. Moura, L.S. Cavalcante, J.C. Sczancoski, D.G. Stroppa, E.C. Paris, A.J. Ramirez, J.A. Varela, E. Longo, Adv. Powder Technol. 21, 197–202 (2010)

    Article  CAS  Google Scholar 

  18. S. Singh, A. Sahai, S.C. Katyal, N. Goswami, Mater. Sci.-Pol. 36(4), 722–732 (2018)

    Article  CAS  Google Scholar 

  19. S. Singh, S.C. Katyal, N. Goswami, Appl. Phys. A 125, 638 (2019)

    Article  Google Scholar 

  20. A. Sahai, N. Goswami, M. Mishra, G. Gupta, Ceram. Int. 44, 2478–2484 (2018)

    Article  CAS  Google Scholar 

  21. A. Sahai, N. Goswami, S.D. Kaushik, S. Tripathi, Appl. Surf. Sci. 390, 974–983 (2016)

    Article  CAS  Google Scholar 

  22. S. Singh, N. Goswami, Mater. Sci. Eng., B 278, 115608 (2022)

    Article  CAS  Google Scholar 

  23. S. Singh, N. Goswami, J Mater Sci: Mater Electron 32, 26857–26870 (2021)

    CAS  Google Scholar 

  24. G.A. Adegboyega, Solar & Wind Technol. 2, 191–194 (1985)

    Article  Google Scholar 

  25. K.F. Kusano, M. Uchikoshi, K. Mimura, M. Isshiki, Oxid. Met. 82, 181–193 (2014)

    Article  CAS  Google Scholar 

  26. M. Yin, C.-K. Wu, Y. Lou, C. Burda, J.T. Koberstein, Y. Zhu, S.O.’ Brien, J. Am. Chem. Soc. 127, 9506–9511 (2005)

    Article  CAS  Google Scholar 

  27. K. Borgohain, J.B. Singh, M.V.R. Rao, T. Shripathi, S. Mahamuni, Phys. Rev. B 61, 11093–11096 (2000)

    Article  CAS  Google Scholar 

  28. Ç. Oruç, A. Al Tindal, Ceram. Int. 43, 10708–10714 (2017)

    Article  Google Scholar 

  29. J.I. Langford, A.J.C. Wilson, J. Appl. Crystallogr. 11, 102–113 (1978)

    Article  CAS  Google Scholar 

  30. M.M. Rahman, U.K. Alo, Int. J. Eng. Res. Sci. (IJOER) 6(2), 1–7 (2020)

    Google Scholar 

  31. M.S. Masoud, S.A. El-Enein, E. El- Shereafy, J. Therm. Anal. 37, 365–373 (1991)

    Article  CAS  Google Scholar 

  32. N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials (Clarendon, Oxford, 1979)

    Google Scholar 

  33. P.P. Sahay, S. Tewari, R.K. Nath, S. Jha, M. Shamsuddin, J. Mater. Sci. 43, 4534–4540 (2008)

    Article  CAS  Google Scholar 

  34. M.A.E. Hiti, J. Phys. D: Appl. Phys. 29, 501 (1996)

    Article  Google Scholar 

  35. S.R. Elliot, Adv. Phys. 36, 135–218 (1987)

    Article  Google Scholar 

  36. S. Singh, N. Goswami, Curr. Appl. Phys. 22, 20–39 (2021)

    Article  Google Scholar 

  37. M. Pollak, T.H. Geballe, Phys. Rev. 122, 1742–1744 (1961)

    Article  CAS  Google Scholar 

  38. A.R. Long, Adv. Phys. 31, 553–637 (1982)

    Article  CAS  Google Scholar 

  39. M. Pollak, G.E. Pike, Phys. Rev. Lett. 28, 1449–1567 (1972)

    Article  CAS  Google Scholar 

  40. E.M. Mohammad, K.A. Malins, P. Kurian, M.R. Anantharaman, Mater. Res. Bull. 37, 753–768 (2002)

    Article  Google Scholar 

  41. B. Tareev, Physics of Dielectric Materials (Mir Publishers, Moscow, 1975)

    Google Scholar 

  42. C.G. Koops, Phys. Rev. 83, 121–124 (1951)

    Article  CAS  Google Scholar 

  43. S. Singh, N. Goswami, S.R. Mohapatra, A.K. Singh, S.D. Kaushik, Mater. Sci. Eng., B 271, 115301 (2021)

    Article  CAS  Google Scholar 

  44. M. Li, A. Feteira, D.C. Sinclair, J. of Appl. Phys. 105, 114109–114118 (2009)

    Article  Google Scholar 

  45. M.R. Anantharaman, S. Sindhu, S. Jagatheesan, K.A. Molini, P. Kurian, J. Phys. D: Appl. Phys. 32, 1801–1810 (1999)

    Article  CAS  Google Scholar 

  46. M.M. Natile, A. Galenda, A. Glisenti, Surf. Sci. Spectra 16, 13–26 (2009)

    Article  CAS  Google Scholar 

  47. H.H. Lin, C.Y. Wang, H.C. Shih, J.M. Chen, C.T. Hsieh, J. Appl. Phys. 95, 5889 (2004)

    Article  CAS  Google Scholar 

  48. C.D. Wagner, W.M. Riggs, I.E. Davis, G.E. Mullenberg (eds.), Handbook of X-ray Photoelectron Spectroscopy (Perkin elmer Corp, Physical Electronic Division, Minnesota, 1979)

    Google Scholar 

  49. S. Sarkar, P.K. Jana, B.K. Chaudhuri, H. Sakata, Appl. Phys. Lett. 89, 212905 (2006)

    Article  Google Scholar 

  50. K. Himanshu, D.C. Gupta, T.P. Sinha, Indian J. Pure Appl. Phys. 44, 31–39 (2006)

    Google Scholar 

  51. A. Simon, R. Ravez, M.P. Crosnier, Y. Piffard, M. Tournoux, J. Phys. Chem. Solids 52, 1165–1167 (1991)

    Article  CAS  Google Scholar 

  52. J.M. Stevels (Handbuch der Physik, Berlin: Springer, 1957).

  53. H. Liu, G.X. Wang, D. Eexier, J.Z. Wang, H.K. Liu, Electrochemistry Communication 10, 165–169 (2008)

    Article  Google Scholar 

  54. J.R. Macdonald, W.B. Johanson (ed.), Theory in Impedance Spectroscopy (Wiley, New York, 1987)

Download references

Acknowledgements

The author Navendu Goswami acknowledges the Core Research Grant received by SERB-DST, India CRG/2021/006804. Surendra Singh is grateful to Meerut Institute of Engineering and Technology, Meerut for encouraging the research work.

Funding

No funds, grants, or other support were received.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SS and NG; Methodology: SS and NG; Formal analysis and investigation: SS; Writing and original draft preparation: SS; Writing, reviewing, and editing of the manuscript: NG. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Navendu Goswami.

Ethics declarations

Conflict of interest

Not applicable.

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

Code availability

Not applicable.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Goswami, N. Dielectric study of pure CuO nanoparticles prepared through exploding wire technique. J Mater Sci: Mater Electron 34, 182 (2023). https://doi.org/10.1007/s10854-022-09628-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09628-1

Navigation