Skip to main content
Log in

Role of Al2O3, WO3, Nb2O5, and PbO on the physical, elasto-mechanical and radiation attenuation performance of borotellurite glasses

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work intended to determine the contribution of different rare-earth elements (W6+, Nb5+, and Pb2+) with respect to Al3+ effects and on physical, structural, mechanical and shielding performance of different types of borotellurite glasses. Accordingly, nine different borotellurite glasses from the system: 5MxOy − zAl2 O3 − 20B2O3 − (75 − z)TeO2 (where MxOy = WO3, Nb2O5, and PbO) and three glasses of the chemical form zAl2 O3 − 20B2O3 − (80 − z)TeO2; where (x, y, z) = 0, 5, and 10 mol% compositions were comprehensively examined for of their nuclear attenuation shielding performance, along with physical, thermodynamic and mechanical properties. The results revealed that these rare-earth ions have different effects on the mechanical and shielding properties of borotellurite glasses against ionizing radiation. W6+, Nb5+ and Pb2+ increased the borotellurite mass attenuation coefficient (MAC) values and enhanced the radiation protection efficiency of the glass, however Al3+ decreased it. These findings pointed that W-reinforced borotellurite glass composition, namely 5WO3-5Al2O3-20B2O3-70TeO2 40Bi2O3 with density of 4.77 g/cm3 had superior gamma-ray attenuation performance. These correlated findings between the radiation shielding performance, chemical, physical, structural, and mechanical properties may open a door for engineers to design glasses using rare-earth oxides as additive components for special needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Relevant research data are included in the text of the work.

References

  1. J.H. Hubbell, Review of photon interaction cross section data in medical and biological context. Phys. Med. Biol. 44, R1–R22 (1993)

    Article  Google Scholar 

  2. M. Shaweta, V. Chopra, Biological effects of radiation, in Wood head publishing series in electronic and optical materials, radiation dosimetry phosphors. (Wood head Publishing, 2022), pp.485–508

    Google Scholar 

  3. K. Suzuki, M. Ojima, S. Kodama, M. Watanabe, Radiation-induced DNA damage and delayed induced genomic instability. Oncogene 13(22), 6988–6993 (2003)

    Article  Google Scholar 

  4. S. Gowda, S. Krishnaveni, T. Yashoda, T.K. Umesh, R. Gowda, Photon mass attenuation coefficients, effective atomic numbers and electron densities of some thermoluminescent dosimetric compounds. Pramana 63, 529–541 (2004)

    Article  CAS  Google Scholar 

  5. Y. Elmahroug, B. Tellili, C. Souga, Determination of total mass attenuation coefficients, effective atomic numbers and electron densities for different shielding materials. Ann. Nucl. Energy 75, 268–274 (2015)

    Article  CAS  Google Scholar 

  6. S.A.M. Issa et al., Effective atomic number and mass attenuation coefficient of PbO–BaO–B2O3 glass system. Radiat. Phys. Chem. 120, 33–37 (2016)

    Article  CAS  Google Scholar 

  7. B. Alshahrani, I.O. Olarinoye, C. Mutuwong, C. Sriwunkum, H.A. Yakout, H.O. Tekin, M.S. Al-Buriahi, Amorphous alloys with high Fe content for radiation shielding applications. Radiat. Phys. Chem. 183, 109386 (2021)

    Article  CAS  Google Scholar 

  8. B. Tellili, Y. Elmahroug, C. Souga, Investigation on radiation shielding parameters of cerrobend alloys. Nucl. Eng. Technol. 49, 1758–1771 (2017)

    Article  CAS  Google Scholar 

  9. B. Aygün, High alloyed new stainless steel shielding material for gamma and fast neutron radiation. Nucl. Eng. Technol. 52, 647–653 (2020)

    Article  Google Scholar 

  10. H.O. Tekin, O. Kilicoglu, The influence of gallium (Ga) additive on nuclear radiation shielding effectiveness of Pd/Mn binary alloys. J. Alloys Compd. 815, 152484 (2019)

    Article  Google Scholar 

  11. O.M. William, J.F. John, K.A. Danso, Assessment of radiation shielding properties of polyester steel composite using MCNP5. Int. J. Sci. Technol. 2, 455–461 (2012)

    Google Scholar 

  12. A. Levet, E. Kavaz, Y. Özdemir, An experimental study on the investigation of nuclear radiation shielding characteristics in iron-boron alloys. J. Alloys Compd. 819, 152946 (2020)

    Article  CAS  Google Scholar 

  13. G. Kilic, S.A.M. Issa, E. Ilik, O. Kilicoglu, U.G. Issever, R. El-Mallawany, B. Issa, H.O. Tekin, Physical, thermal, optical, structural and nuclear radiation shielding properties of Sm2O3 reinforced borotellurite glasses. Ceram. Int. 47, 6154–6168 (2021)

    Article  CAS  Google Scholar 

  14. H.O. Tekin, S. Alomairy, M.S. Al-Buriahi, Y.S. Rammah, Linear/nonlinear optical parameters along with photon attenuation effectiveness of Dy3+ ions doped zinc aluminoborosilicate glasses. Phys. Scr. 96, 065704 (2021)

    Article  Google Scholar 

  15. G. Almisned, O.H. Tekin, G. Bilal, A. Ene, G. Kilic, S.A.M. Issa, M. Algethami, H.M.H. Zakaly, Trivalent ions and their impacts on effective conductivity at 300 K and radio-protective behaviors of bismo-borate glasses: a comparative investigation for Al, Y, Nd, Sm, Eu. Materials 14, 5894 (2021)

    Article  CAS  Google Scholar 

  16. H.O. Tekin, S.A.M. Issa, G. Kilic, H.M.H. Zakaly, N. Tarhan, H.A.A. Sidek, K.A. Matori, M.H.M. Zaid, A systematical characterization of TeO2–V2O5 glass system using boron (III) oxide and neodymium (III) oxide substitution: resistance behaviors against ionizing radiation. Appl. Sci. 11, 3035 (2021)

    Article  CAS  Google Scholar 

  17. N. Kaur, A. Khanna, M. Gónzález-Barriuso, F. González, B. Chen, Effects of Al3+, W6+, Nb5+ and Pb2+ on the structure and properties of borotellurite glasses. J. Non-Cryst. Solids 429, 153–163 (2015)

    Article  CAS  Google Scholar 

  18. S. Hraiech, M. Ferid, Y. Guyot, G. Boulon, Structural and optical studies of Yb3+, Er3+ and Er3+/Yb3+ co-doped phosphate glasses. J. Rare Earths 31, 685–692 (2013)

    Article  CAS  Google Scholar 

  19. R. Divina, K. Marimuthu, M.I. Sayyed, H.O. Tekin, O. Agar, physical, structural, and radiation shielding properties of B2O3–MgO–K2O–Sm2O3 glass network modified with TeO2. Radiat. Phys. Chem. 160, 75–82 (2019)

    Article  CAS  Google Scholar 

  20. R. Divina, G. Sathiyapriya, K. Marimuthu, A. Askin, M.I. Sayyed, Structural, elastic, optical and γ-ray shielding behavior of Dy3+ ions doped heavy metal incorporated borate glasses. J. Non-Cryst. Solids 545, 120269 (2020)

    Article  CAS  Google Scholar 

  21. R. El-Mallawany, Tellurite glasses handbook: physical properties and data (CRC Press, 2002)

    Google Scholar 

  22. Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, K. Oikawa, Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5 μm broadband amplification. Opt. Lett. 23, 274–276 (1998)

    Article  CAS  Google Scholar 

  23. J.S. Wang, E.M. Vogel, E. Snitzer, Tellurite glass: a new candidate for fiber devices. Opt. Mater. 3, 187–203 (1994)

    Article  CAS  Google Scholar 

  24. P. Giridhar, S. Sailaja, M.B. Reddy, K.V. Raju, C.N. Raju, B.S. Reddy, Spectroscopic studies of RE3+(RE = Eu, Tb, Sm & Dy): lithium lead boro tellurite glasses. Ferroelectr. Lett. Sect. 38, 1–10 (2011)

    Article  CAS  Google Scholar 

  25. A. Kaur, A. Khanna, C. Pesquera, F. González, V. Sathe, Preparation and characterization of lead and zinc tellurite glasses. J. Non-Cryst. Solids 356, 864–872 (2010)

    Article  CAS  Google Scholar 

  26. A. Kaur, A. Khanna, V.G. Sathe, F. Gonzalez, B. Ortiz, Optical, thermal, and structural properties of Nb2O5–TeO2 and WO3–TeO2 glasses, phase. Transit 86, 598–619 (2013)

    CAS  Google Scholar 

  27. A.G. Kalampounias, G.N. Papatheodorou, S.N. Yannopoulos, A temperature dependence Raman study of the 0.1Nb2O5–0.9TeO2 glass-forming system. J. Phys. Chem. Solids 67, 725–731 (2006)

    Article  CAS  Google Scholar 

  28. N. Kaur, A. Khanna, Structural characterization of borotellurite and alumino-borotellurite glasses. J. Non-Cryst. Solids 404, 116–123 (2014)

    Article  CAS  Google Scholar 

  29. C. Zuraini, W.M.D.W. Yusoff, M.K. Halimah, A.W. Zaidan, Dielectric properties of B2O3–TeO2–Sm2O3 glasses system. Solid State Sci. Technol. 19, 285–300 (2011)

    CAS  Google Scholar 

  30. K. Maheshvaran, V. Uma, K. Marimuthu, Spectroscopic studies on Er3+ doped borotellurite glasses. Trans. Indian Ceram. Soc. 72, 21–23 (2013)

    Article  CAS  Google Scholar 

  31. K.A. Aly, Y.B. Saddeek, A. Dahshan, Effect of WO3 on the glass transition and crystallization kinetics of borotellurite glasses. Philos. Mag. 90, 4429–4441 (2010)

    Article  CAS  Google Scholar 

  32. R.P. Sreekanth Chakradhar, J. Lakshmana Rao, G. Sivaramaiah, N.O. Gopal, Chromium ions in alkali lead borotellurite glasses—an EPR and optical study. Phys. Status Solid 242, 2919–2929 (2005)

    Article  Google Scholar 

  33. I. Mustafa, H. Kamari, W. Yusoff, S. Aziz, A. Rahman, Structural and optical properties of lead–boro-tellurrite glasses induced by gamma-ray. Int. J. Mol. Sci. 14, 3201–3214 (2013)

    Article  CAS  Google Scholar 

  34. S. Agostinelli, J. Allison, K.A. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, GEANT4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 506(3), 250–303 (2003)

    Article  CAS  Google Scholar 

  35. ANSI, ANS-6.4.3 (W2001), Geometric progression gamma-ray buildup factor coefficients (American Nuclear Society, La Grange Park, 1991)

    Google Scholar 

  36. M.J. Berger, J.H. Hubbell, XCOM: photon cross-sections database (Version 12) (NIST, 1999)

    Google Scholar 

  37. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020)

    Article  Google Scholar 

  38. A. Makishima, J.D. Mackenzie, Direct calculation of young’s modulus of glass. J. Non-Cryst. Solids 12, 35–45 (1973)

    Article  CAS  Google Scholar 

  39. A. Makishima, Y. Tamura, T. Sakaino, Elastic moduli and refractive indices of aluminosilicate glasses containing Y2O3, La2O3, and TiO2. J. Am. Ceram. Soc. 61, 247–249 (1978)

    Article  CAS  Google Scholar 

  40. A.F. Wells, Structural inorganic chemistry, 5th edn. (Clarendon Press, Oxford, 1984)

    Google Scholar 

  41. L. Pauling, The nature of the chemical bond and the structure of molecules and crystals, 2nd edn. (Cornell University Press, Ithaca, 1940)

    Google Scholar 

  42. Y.S. Rammah, K.A. Mahmoud, E. Kavaz, I. El-Agawany, The role of PbO/Bi2O3 insertion on the shielding characteristics of novel borate glasses. Ceram. Int. 46, 23357–23368 (2020)

    Article  CAS  Google Scholar 

  43. T. Rouxel, Elastic properties and short-to medium-range order in glasses. J. Am. Ceram. Soc. 90, 3019–3039 (2007)

    Article  CAS  Google Scholar 

  44. J. Wood, Computational methods in reactor shielding (Pergamon Press Inc, New York, 1982)

    Google Scholar 

  45. Z. Khattari, M.S. Al-Buriahi, Monte Carlo simulations and Phy-X/PSD study of radiation shielding effectiveness and elastic properties of barium zinc aluminoborosilicate glasses. Radiat. Phys. Chem. 195, 110091 (2022)

    Article  CAS  Google Scholar 

  46. T. To, L.R. Jensen, M.M. Smedsjkaer, On the relation between fracture toughness and crack resistance in oxide glasses. J. Non-Cryst. Solids 534, 119946 (2020)

    Article  CAS  Google Scholar 

  47. S. Ghosh, A.D. Sharma, A.K. Mukhopadhyay, P. Kundu, R.N. Basu, Effect of BaO addition on magnesium lanthanum alumino borosilicate-based glass-ceramic sealant for anode-supported solid oxide fuel cell. Int. J. Hydrogen Energy 35, 272–283 (2010)

    Article  CAS  Google Scholar 

  48. G.A. Lawrance, Introduction to coordination chemistry (Wiley, 2009)

    Google Scholar 

  49. H.M. Zakaly, A.S. Abouhaswa, S.A.M. Issa, M.Y.A. Mostafa, M. Pyshkina, R. El-Mallawany, Optical and nuclear radiation shielding properties of zinc borate glasses doped with lanthanum oxide. J. Non. Cryst. Solids. 543, 120151 (2020)

    Article  CAS  Google Scholar 

  50. H.M.H. Zakaly, H.A. Saudi, S.A.M. Issa, M. Rashad, A.I. Elazaka, H.O. Tekin, Y.B. Saddeek, Alteration of optical, structural, mechanical durability and nuclear radiation attenuation properties of barium borosilicate glasses through BaO reinforcement: experimental and numerical analyses. Ceram. Int. 47, 5587–5596 (2021)

    Article  CAS  Google Scholar 

  51. S.A.M. Issa, M. Rashad, H.M.H. Zakaly, H.O. Tekin, A.S. Abouhaswa, Nb2O5-Li2O-Bi2O3-B2O3 novel glassy system: evaluation of optical, mechanical, and gamma shielding parameters. J. Mater. Sci. Mater. Electron. 31, 22039–22056 (2020)

    Article  CAS  Google Scholar 

  52. S.A. Issa, H.M.H. Zakaly, M. Pyshkina, M.Y.A. Mostafa, M. Rashad, T.S. Soliman, Structure, optical, and radiation shielding properties of PVA–BaTiO3 nanocomposite films: an experimental investigation. Radiat. Phys. Chem. 180, 109281 (2021)

    Article  CAS  Google Scholar 

  53. M.G. Dong et al., Investigation of gamma radiation shielding properties of lithium zinc bismuth borate glasses using XCOM program and MCNP5 code. J. Non-Cryst. Solids 468, 12–16 (2017)

    Article  CAS  Google Scholar 

  54. A.M. Shams, A.M.A. Issa, M.D. Mostafa, V.P. Singh, H.O. Tekin, Determining the gamma-ray parameters for BaO–ZnO–B2O3 glasses using MCNP5 code: a comparison study. Radiat. Eff. Def. Solids. 173, 510–525 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

Z.Y. Khattari acknowledges the financial support from the Hashemite University.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

ZK: Conceptualization, review & editing, writing manuscript first draft; NA: Assisted in data collection & analysis and rearranging the manuscript first draft, review & editing, resources; YSR: Conceptualization, review & editing, writing manuscript first draft; AS: Supervision and Finalized the last version of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Z. Y. Khattari or Y. S. Rammah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for publications

Authors declare that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alharbiy, N., Khattari, Z.Y., Rammah, Y.S. et al. Role of Al2O3, WO3, Nb2O5, and PbO on the physical, elasto-mechanical and radiation attenuation performance of borotellurite glasses. J Mater Sci: Mater Electron 34, 191 (2023). https://doi.org/10.1007/s10854-022-09604-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09604-9

Navigation