Skip to main content

Advertisement

Log in

Preparation of CF@MXene/PANI fiber electrodes for high-performance flexible supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Designing flexible electrodes with high-specific capacitance is crucial for creating a high-performance flexible supercapacitors (SCs) for use in portable, wearable, and compact electronics. In this study, to combine the advantages of different electrode materials, synergistic composites electrodes were designed and prepared. Carbon fiber (CF) was used as the flexible conductive framework, and polyaniline (PANI) and Ti3C2Tx as active materials were introduced into the CF surface via in-situ “co-growth” polymerization. A thick layer of MXene/PANI composites on CF surface with desired 3D interconnected porous topography and foam-like structure was realized by controlling MXene content and polymerization duration. The as-built microstructure afforded pathways for fast and efficient ion/electron transfer, which was contributed by the MXene nano-lamina and the PANI. MXene helped not only to improve the electronic conductivity of the PANI as well as a role of nucleation effect for PANI molecular chain propagation. In case of MXene, the intercalation of PANI molecular chain into the multilayer structure prevented its restacking and aggregation. Eletrochemical performance characterization shows that an excellent specific capacitance of 193.75 F/g at a current density of 1 A/g was achieved as well as good stability of 89% retention rate after 2000 charge/discharge cycles. This study provides a facile and effective approach for modifing CF with active materials and for constructing high-specific-area coating-structured electrodes for high-performance flexible SC applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Chung, C.T. Lo, W. Wu, Electrochim. Acta. 364, 137324 (2020)

    Article  CAS  Google Scholar 

  2. S. De, C. Maity, S. Sahoo, G. Nayak, A.C.S. Appl, Energy Mater. 4, 3712–3723 (2021)

    CAS  Google Scholar 

  3. H. Cheng, Q. Li, L. Zhu, S. Chen, Small Methods. 5, 2100502 (2021)

    Article  CAS  Google Scholar 

  4. N. Xu, C. Yan, W. He, L. Xu, Z. Jiang, A. Zheng, H. Wu, M. Chen, G. Diao, J. Power Sources. 533(15), 231358 (2022)

    Article  CAS  Google Scholar 

  5. H. Zhao, W. Qiu, Y. Zhang, Y. Han, M. Yu, Z. Wang, X. Lu, Y. Tong, J. Mater. Chem. A 4, 18639 (2016)

    Article  Google Scholar 

  6. Y. Fan, H. Chen, Y. Li, D. Cui, Z. Fan, C. Xue, Ceram. Int 47, 8433–8440 (2021)

    Article  CAS  Google Scholar 

  7. X. Wang, D. Jiang, C. Jing, X. Liu, K. Li, M. Yu, S. Qi, Y. Zhang, J. Energy Storage. 30, 101554 (2020)

    Article  Google Scholar 

  8. H. He, L. Ma, S. Fu, M. Gan, L. Hu, H. Zhang, F. Xie, M. Jiang, Appl. Surf. Sci. 484, 1288–1296 (2019)

    Article  CAS  Google Scholar 

  9. H. Liu, N. Chen, A. Umar, H. Li, S. Li, P. Bai, N.F.D. Rooij, Y. Wang, G. Zhou, ACS. Appl. Energy Mater. 3, 11792–11802 (2020)

    Article  CAS  Google Scholar 

  10. M. Faisal, F.A. Harraz, A.A. Ismail, M.A. Alsaiari, S.A. Al-Sayari, M.S. Al-Assri, Ceram. Int. 45, 20484–20492 (2019)

    Article  CAS  Google Scholar 

  11. D. Lei, K. Devarayan, M. Seo, Y. Kim, B. Kim, Mater Lett. 154, 173–176 (2015)

    Article  CAS  Google Scholar 

  12. P. Song, X. He, J. Tao, X. Shen, Z. Yan, Z. Ji, A. Yuan, G. Zhu, L. Kong, Appl. Surf. Sci. 535, 147755 (2020)

    Article  Google Scholar 

  13. W. Huang, Z. Li, D. Li, Z. Hu, C. Wu, K. Lv, Q. Li, Rare Met. 41(10), 3268–3300 (2022)

    Article  CAS  Google Scholar 

  14. B. Xu, F. Ye, R. Chen, X. Luo, G. Chang, R. Li, Ceram. Int. 48, 10220–10226 (2022)

    Article  CAS  Google Scholar 

  15. L. Sun, Q. Fu, C. Pan, J. Hazard. Mater. 410, 124565 (2021)

    Article  CAS  Google Scholar 

  16. M. Hu, T. Hu, R. Cheng, J. Yang, C. Cui, C. Zhang, J. Energy. Chem. 27, 161–166 (2018)

    Article  Google Scholar 

  17. A. Hammand, A. Elzwawy, A.M. Mansour, M.M. Alam, A.M. Asiri, M.R. Karim, M.M. Rahman, A.M.E. Nahrawy, New J. Chem. 44, 7941–7953 (2020)

    Article  Google Scholar 

  18. A.M.E. Nahrawy, A.S. Montaser, A.M. Bakr, A.B.A. Hammand, A.M. Mansour, J. Mater. Sci. Mater. El. 32, 28019–28031 (2021)

    Article  Google Scholar 

  19. A.M. Mansour, M. Nasr, H.A. Saleh, G.M. Mahmoud, Appl. Phys. A. 125, 625 (2019)

    Article  Google Scholar 

  20. G. Cui, X. Sun, G. Zhang, Z. Zhang, H. Liu, J. Gu, G. Gu, Mater. Lett. 252, 8–10 (2019)

    Article  CAS  Google Scholar 

  21. S. Li, Z. Fan, G. Wu, Y. Shao, Z. Xia, C. Wei, F. Shen, X. Tong, J. Yu, K. Chen, M. Wang, Y. Zhao, Z. Luo, M. Jian, J. Sun, R. Kaner, Y. Shao, ACS Nano 15, 7821–7832 (2021)

    Article  CAS  Google Scholar 

  22. S. Qiu, C.A. Fuentes, D. Zhang, A.W. Vuure, D. Seveno, A.C.S. Appl, Energy Mater. 32, 9697–9705 (2016)

    CAS  Google Scholar 

  23. R. Radjef, K.L. Jarvis, B.L. Fox, S.L. Mcarthur, Surf. Coat. Technol. 408, 126751 (2021)

    Article  CAS  Google Scholar 

  24. J. Zhou, Q. Kang, S. Xu, X. Li, C. Liu, L. Ni, N. Chen, C. Lu, X. Wang, L. Peng, X. Guo, W. Ding, W. Hou, Nano. Res. 15, 285–295 (2021)

    Article  Google Scholar 

  25. M.J. Kim, K.H. Kim, X. Yang, Y. Yu, Y.S. Li, J. Ind. Eng. Chem. 76, 181–187 (2019)

    Article  CAS  Google Scholar 

  26. A. VahiMohammadi, J. Moncada, H. Chen, E. Kayali, J. Orangi, C.A. Carrero, M. Beidaghi, J. Mater. Chem. 44, 22123 (2018)

    Article  Google Scholar 

  27. J. Yang, Y. Yang, J. Lan, Y. Yu, X. Yang, J. Electroanal. Chem. 843, 22–30 (2019)

    Article  CAS  Google Scholar 

  28. Z. Wen, C. Xu, X. Qian, Y. Zhang, X. Wang, S. Song, M. Dai, C. Zhang, Appl. Surf. Sci. 486, 546–554 (2019)

    Article  CAS  Google Scholar 

  29. X. Wang, H. Wei, W. Du, X. Sun, L. Kang, Y. Zhang, X. Zhao, F. Jiang, Polym. 10, 1152 (2018)

    Article  Google Scholar 

  30. R.K. Cheedarala, A.N. Parvez, K.K. Ahn, Nano Energy 53, 362–372 (2018)

    Article  CAS  Google Scholar 

  31. L. Liu, G. Ying, C. Hu, K. Zhang, F. Ma, L. Su, C. Zhang, C. Wang, A.C.S. Appl, Nano. Mater. 2, 5553–5562 (2019)

    CAS  Google Scholar 

  32. A.T. Mathew, K.B. Akshaya, T.P. Vinod, A. Varghese, L. George, Chem. Select. 5, 3283–3294 (2020)

    CAS  Google Scholar 

  33. K. Li, X. Wang, X. Wang, M. Liang, V. Nicolosi, Y. Xu, Nano Energy 75, 104971 (2020)

    Article  CAS  Google Scholar 

  34. Z. Wang, Y. Chen, M. Yao, J. Dong, Q. Zhang, L. Zhang, X. Zhao, J. Power. Sources. 448, 227398 (2020)

    Article  CAS  Google Scholar 

  35. W. Zhang, Y. Li, T. Lv, W. Liu, Y. Luo, R. Guo, H. Pei, C. Lai, J. Xie, J. Electrochem Soc. 168, 030505 (2021)

    Article  CAS  Google Scholar 

  36. Y. Zhou, X. Sun, A. Fan, Y. Shang, K. Xiong, J. Guo, S. Jin, S. Cai, C. Zheng, Appl. Surf. Sci. 538, 148194 (2021)

    Article  CAS  Google Scholar 

  37. K.M.M. Aguilar, Y. Amano, M. Machida, J. Environ. Chem. Eng. 4, 4644–4652 (2016)

    Article  Google Scholar 

  38. Y. Wei, W. Luo, X. Li, Z. Lin, C. Hou, M. Ma, J. Ding, T. Li, Y. Ma, Electrochim. Acta. 406, 139874 (2022)

    Article  CAS  Google Scholar 

  39. M. Cai, H. Yan, Y. Li, W. Li, H. Li, X. Fan, M. Zhu, Chem. Eng. J. 410, 128310 (2021)

    Article  CAS  Google Scholar 

  40. A.L. Greer, J. Chem. Phys. 145, 211704 (2016)

    Article  CAS  Google Scholar 

  41. A.C. Rodrigues, E. Leal da Silva, A.P.S. Oliveira, J.T. Matsushima, A. Cuna, J.S. Marcuzzo, E.S. GonCalves, M.R. Baldan, Mater. Today. Commun. 21, 100553 (2019)

    Article  CAS  Google Scholar 

  42. J. Gu, S. Kan, Q. Shen, J. Kan, Int. J. Electrochem. Sci. 9, 6858–6869 (2014)

    Google Scholar 

  43. R.S. Hastak, P. Sivaraman, D.D. Potphode, K. Shashidhara, A.B. Samui, J. Solid State Electrochem. 16, 3215–3226 (2012)

    Article  CAS  Google Scholar 

  44. X. Fan, P. Ohlckers, X. Chen, Appl. Sci. 10, 1208 (2020)

    Article  CAS  Google Scholar 

  45. N.O. Laschuk, E.B. Easton, O.V. Zenkina, RSC. Adv. 11, 27925–27936 (2021)

    Article  CAS  Google Scholar 

  46. Y. Li, H. Ye, J. Chen, N. Wang, R. Sun, C. Wong, J. Alloy. Compd. 737, 731–739 (2018)

    Article  CAS  Google Scholar 

  47. W. Hu, R. Xiang, K. Zhang, Q. Xu, Y. Liu, Y. Jing, J. Zhang, X. Hu, Y. Zheng, Y. Jin, X. Yang, C. Lu, A.C.S. Appl, Energy Mater. 4, 9077–9089 (2021)

    CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from National Natural Science Foundation of China (NO.51903109).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [Liyuan Cheng], [Yun Qu] and [Jie Sun]. The first draft of the manuscript was written by [Liyuan Cheng] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jie Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, L., Qu, Y. & Sun, J. Preparation of CF@MXene/PANI fiber electrodes for high-performance flexible supercapacitors. J Mater Sci: Mater Electron 34, 103 (2023). https://doi.org/10.1007/s10854-022-09562-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09562-2

Navigation