Skip to main content

Advertisement

Log in

BiVO4/Bi2S3 heterojunction decorated by Pt and FeOOH double cocatalysts to enhance photoelectrochemical degradation of Rhodamine B

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The performance of photoelectrochemical (PEC) degradation is mainly influenced by the efficient separation and transfer of photogenerated charge carriers and the excellent light absorption properties of photoelectrodes. Therefore, the Pt/BiVO4/Bi2S3/FeOOH photoelectrode was firstly designed for improving PEC degradation performance by combining the cooperative action of double cocatalysts and BiVO4/Bi2S3 heterojunction. As expected, the Pt/BiVO4/Bi2S3/FeOOH photoelectrode exhibits an improved photocurrent of 4.35 mA/cm2 with 1.23 V vs. RHE under visible light in a 0.2 M Na2SO4 electrolyte with 5 mg/L Rhodamine B (RhB), which is about 11.1 times than pristine BiVO4. Meanwhile, the efficient PEC degradation of 91% was obtained of Pt/BiVO4/Bi2S3/FeOOH. These results indicate BiVO4/Bi2S3 heterojunctions inhibit charge recombination due to the driving effect of different energy effects and Bi2S3 displays a light collector for abundant light absorption; subsequently, the double cocatalysts of Pt and FeOOH were accepted to accelerate carrier separation and improve photoelectrode stability. This research may inspire the rational combination of double cocatalysts to synergistic enhance semiconductors heterojunction in PEC degradation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. E.R.A. Ferraz, G.A.R. Oliveira, M.D. Grando, T.M. Lizier, M.V.B. Zanoni, D.P. Oliveira, Photoelectrocatalysis based on Ti/TiO2 nanotubes removes toxic properties of the azo dyes disperse red 1, disperse red 13 and disperse orange 1 from aqueous chloride samples. J. Environ. Manage. 124, 108–114 (2013)

    Article  CAS  Google Scholar 

  2. F. Rao, G. Zhu, W. Zhang, J. Gao, F. Zhang, Y. Huang, M. Hojamberdiev, In-situ generation of oxygen vacancies and metallic bismuth from (BiO)2CO3 via N2-assisted thermal-treatment for efficient selective photochemical NO removal. Appl. Catal. B 281, 119481 (2021)

    Article  CAS  Google Scholar 

  3. J. Nie, J. Gao, Q. Shen, W. Zhang, F. Rao, M. Hojamberdiev, G. Zhu, Flower-like BiO/CeO2-δ plasmonic photocatalysts with enhanced visible-light-induced photocatalytic activity for NO removal. Sci. China Mater. 63, 2272–2280 (2020)

    Article  CAS  Google Scholar 

  4. H. Yu, Z. Zhang, M. Han, X. Hao, F. Zhu, A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays. J. Am. Chem. Soc. 127, 2378–2379 (2005)

    Article  CAS  Google Scholar 

  5. K. Zhang, Y. Liu, J. Deng, S. Xie, H. Lin, X. Zhao, H. Dai, Fe2O3/3DOM BiVO4: high-performance photocatalysts for the visible light-driven degradation of 4-nitrophenol. Appl. Catal. B 202, 569–579 (2017)

    Article  CAS  Google Scholar 

  6. A.S. Martins, P.J.M. Cordeiro-Junior, G.G. Bessegato, J.F. Carneiro, M.V.B. Zanoni, L.M.R. de Vasconcelos, Electrodeposition of WO3 on Ti substrate and the influence of interfacial oxide layer generated in situ: a photoelectrocatalytic degradation of propyl paraben. Appl. Surf. Sci. 464, 664–672 (2019)

    Article  CAS  Google Scholar 

  7. K.R. Reddy, C.V. Reddy, M.N. Nadagouda, N.P. Shetti, S. Jaesool, T.M. Aminabhavi, Polymeric graphitic carbon nitride (g-C3N4)-based semiconducting nanostructured materials: synthesis methods, properties and photocatalytic applications. J. Environ. Manage. 238, 25–40 (2019)

    Article  CAS  Google Scholar 

  8. W. Sang, G. Zhang, H. Lan, X. An, H. Liu, The effect of different exposed facets on the photoelectrocatalytic degradation of o-chlorophenol using p-type Cu2O crystals. Electrochim. Acta 231, 429–436 (2017)

    Article  CAS  Google Scholar 

  9. H. Liu, W. Yang, L. Wang, H. Hou, F. Gao, Electrospun BiVO4 nanobelts with tailored structures and their enhanced photocatalytic/photoelectrocatalytic activities. CrystEngComm 19, 6252–6258 (2017)

    Article  CAS  Google Scholar 

  10. Y. He, L. Li, W. Fan, A novel and facile solvothermal-and-hydrothermal method for synthesis of uniform BiVO4 film with high photoelectrochemical performance. J. Alloys Compd. 732, 593–602 (2018)

    Article  CAS  Google Scholar 

  11. Y. He, R. Yuan, M.K. Leung, Highly efficient AgBr/BiVO4 photoanode for photocatalytic fuel cell. Mater. Lett. 236, 394–397 (2019)

    Article  CAS  Google Scholar 

  12. K. Trzciński, M. Szkoda, M. Sawczak, J. Karczewski, A. Lisowska-Oleksiak, Visible light activity of pulsed layer deposited BiVO4/MnO2 films decorated with gold nanoparticles: the evidence for hydroxyl radicals formation. Appl. Surf. Sci. 385, 199–208 (2016)

    Article  Google Scholar 

  13. T.W. Kim, K.S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014)

    Article  CAS  Google Scholar 

  14. J. Xue, J. Li, Q. Bi, C. Tang, L. Zhang, Z. Leng, Yb-substitution triggered BiVO4-Bi2O3 heterojunction electrode for photoelectrocatalytic degradation of organics. Colloids Surf. A 593, 124640 (2020)

    Article  CAS  Google Scholar 

  15. T.M. do Prado, F. Lindo Silva, G. Grosseli, P. Sergio Fadini, O. Fatibello Filho, F.C. de Moraes, Using BiVO4/CuO-based photoelectrocatalyzer for 4-nitrophenol degradation. Materials 13, 1322 (2020)

    Article  Google Scholar 

  16. B.O. Orimolade, B.A. Koiki, G.M. Peleyeju, O.A. Arotiba, Visible light driven photoelectrocatalysis on a FTO/BiVO4/BiOI anode for water treatment involving emerging pharmaceutical pollutants. Electrochim. Acta 307, 285–292 (2019)

    Article  CAS  Google Scholar 

  17. Y. Yan, T. Ni, J. Du, L. Li, S. Fu, K. Li, J. Zhou, Green synthesis of balsam pear-shaped BiVO4/BiPO4 nanocomposite for degradation of organic dye and antibiotic metronidazole. Dalton Trans. 47, 6089–6101 (2018)

    Article  CAS  Google Scholar 

  18. M.A. Mahadik, H.S. Chung, S.Y. Lee, M. Cho, J.S. Jang, In-situ noble fabrication of Bi2S3/BiVO4 hybrid nanostructure through a photoelectrochemical transformation process for solar hydrogen production. ACS Sustain. Chem. Eng. 6, 12489–12501 (2018)

    Article  CAS  Google Scholar 

  19. S. Cao, X. Fei, Y. Wen, Z. Sun, H. Wang, Z. Wu, Bimodal mesoporous TiO2 supported Pt, Pd and Ru catalysts and their catalytic performance and deactivation mechanism for catalytic combustion of dichloromethane (CH2Cl2). Appl. Catal. A 550, 20–27 (2018)

    Article  CAS  Google Scholar 

  20. X. Li, N. Zhang, Y.J. Xu, Promoting visible-Light photocatalysis with palladium species as cocatalyst. ChemCatChem 7, 2047–2054 (2015)

    Article  CAS  Google Scholar 

  21. Y. Li, Z. Liu, Z. Guo, M. Ruan, X. Li, Y. Liu, Efficient WO3 photoanode modified by Pt layer and plasmonic Ag for enhanced charge separation and transfer to promote photoelectrochemical performances. ACS Sustain. Chem. Eng. 7, 12582–12590 (2019)

    CAS  Google Scholar 

  22. Y. Lan, Z. Liu, Z. Guo, X. Li, L. Zhao, L. Zhan, M. Zhang, A ZnO/ZnFe2O4 uniform core–shell heterojunction with a tubular structure modified by NiOOH for efficient photoelectrochemical water splitting. Dalton Trans. 47, 12181–12187 (2018)

    Article  CAS  Google Scholar 

  23. G. Ai, R. Mo, H. Li, J. Zhong, Cobalt phosphate modified TiO2 nanowire arrays as co-catalysts for solar water splitting. Nanoscale 7, 6722–6728 (2015)

    Article  CAS  Google Scholar 

  24. M. Zhou, Z. Guo, Z. Liu, FeOOH as hole transfer layer to retard the photocorrosion of Cu2O for enhanced photoelctrochemical performance. Appl. Catal. B 260, 118213 (2020)

    Article  CAS  Google Scholar 

  25. L. Wang, Y. Yang, Y. Zhang, Q. Rui, B. Zhang, Z. Shen, Y. Bi, One-dimensional hematite photoanodes with spatially separated Pt and FeOOH nanolayers for efficient solar water splitting. J. Mater. Chem. A 5, 17056–17063 (2017)

    Article  CAS  Google Scholar 

  26. J.Y. Kim, D.H. Youn, K. Kang, J.S. Lee, Highly conformal deposition of an ultrathin FeOOH layer on a hematite nanostructure for efficient solar water splitting. Angew. Chem. Int. Ed. 55, 10854–10858 (2016)

    Article  CAS  Google Scholar 

  27. J. Wang, L. Jiang, F. Liu, M. Jia, M. Liu, J. Li, Y. Lai, Enhanced photoelectrochemical degradation of tetracycline hydrochloride with FeOOH and Au nanoparticles decorated WO3. Chem. Eng. J. 407, 127195 (2021)

    Article  CAS  Google Scholar 

  28. Z. Ye, X. Xiao, J. Chen et al., Fabrication of BiVO4/BiOBr composite with enhanced photocatalytic activity by a CTAB-assisted polyol method. J. Photochem. Photobiol. A 368, 153–161 (2019)

    Article  CAS  Google Scholar 

  29. R. Wang, C. He, W. Chen, C. Zhao, J. Huo, Rich B active centers in penta-B2C as high-performance photocatalyst for nitrogen reduction. Chin. Chem. Lett. 024, 1001–8417 (2021)

    Google Scholar 

  30. W. Luo, Z. Wang, L. Wan, Z. Li, T. Yu, Z. Zou, Synthesis, growth mechanism and photoelectrochemical properties of BiVO4 microcrystal electrodes. J. Phys. D Appl. Phys. 43, 405402 (2010)

    Article  Google Scholar 

  31. Z. Guo, Z. Liu, Synthesis and control strategies of nanomaterials for photoelectrochemical water splitting. Dalton Trans. 50, 1983–1989 (2021)

    Article  CAS  Google Scholar 

  32. S. Zhang, B. Zhang, D. Chen, Z. Guo, M. Ruan, Z. Liu, Promising pyro-photo-electric catalysis in NaNbO3 via integrating solar and cold-hot alternation energy in pyroelectric-assisted photoelectrochemical system. Nano Energy 79, 105485 (2021)

    Article  CAS  Google Scholar 

  33. S. Zhang, D. Chen, Z. Liu, M. Ruan, Z. Guo, Novel strategy for efficient water splitting through pyro-electric and pyro-photo-electric catalysis of BaTiO3 by using thermal resource and solar energy. Appl. Catal. B 284, 119686 (2021)

    Article  CAS  Google Scholar 

  34. B.O. Orimolade, O.A. Arotiba, Towards visible light driven photoelectrocatalysis for water treatment: application of a FTO/BiVO4/Ag2S heterojunction anode for the removal of emerging pharmaceutical pollutants. Sci. Rep. 10, 1–13 (2020)

    Article  Google Scholar 

  35. Y. Li, Z. Liu, J. Zhang, Z. Guo, Y. Xin, L. Zhao, 1D/0D WO3/CdS heterojunction photoanodes modified with dual co-catalysts for efficient photoelectrochemical water splitting. J. Alloys Compd. 790, 493–501 (2019)

    Article  CAS  Google Scholar 

  36. G. Dong, H. Hu, X. Huang, Y. Zhang, Y. Bi, Rapid activation of Co3O4 cocatalysts with oxygen vacancies on TiO2 photoanodes for efficient water splitting. J. Mater. Chem. A 6, 21003–21009 (2018)

    Article  CAS  Google Scholar 

  37. B. Zhang, L. Wang, Y. Zhang, Y. Ding, Y. Bi, Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation. Angew. Chem. Int. Ed. 57, 2248–2252 (2018)

    Article  CAS  Google Scholar 

  38. X. Chang, T. Wang, P. Zhang, J. Zhang, A. Li, J. Gong, Enhanced surface reaction kinetics and charge separation of p–n heterojunction Co3O4/BiVO4 photoanodes. J. Am. Chem. Soc. 137, 8356–8359 (2015)

    Article  CAS  Google Scholar 

  39. D. Chen, Z. Liu, Z. Guo, W. Yan, Y. Xin, Enhancing light harvesting and charge separation of Cu2O photocathodes with spatially separated noble-metal cocatalysts towards highly efficient water splitting. J. Mater. Chem. A 6, 20393–20401 (2018)

    Article  CAS  Google Scholar 

  40. P. Zabel, T. Dittrich, M. Funes, E.N. Durantini, L. Otero, Charge separation at Pd-porphyrin/TiO2 interfaces. J. Phys. Chem. C 113, 21090–21096 (2009)

    Article  CAS  Google Scholar 

  41. W.D. Chemelewski, H.C. Lee, J.F. Lin, A.J. Bard, C.B. Mullins, Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. J. Am. Chem. Soc. 136, 2843–2850 (2014)

    Article  CAS  Google Scholar 

  42. J. Feng, T. Jiang, Y. Han, O.K. Okoth, L. Cheng, J. Zhang, Construction of dual Z-scheme Bi2S3/Bi2O3/WO3 ternary film with enhanced visible light photoelectrocatalytic performance. Appl. Surf. Sci. 505, 144632 (2020)

    Article  CAS  Google Scholar 

  43. D. Cao, Y. Wang, M. Qiao, X. Zhao, Enhanced photoelectrocatalytic degradation of norfloxacin by an Ag3PO4/BiVO4 electrode with low bias. J. Catal. 360, 240–249 (2018)

    Article  CAS  Google Scholar 

  44. N.K. Eswar, S. Adhikari, P.C. Ramamurthy, G. Madras, Efficient interfacial charge transfer through plasmon sensitized Ag@Bi2O3 hierarchical photoanodes for photoelectrocatalytic degradation of chlorinated phenols. Phys. Chem. Chem. Phys. 20, 3710–3723 (2018)

    Article  CAS  Google Scholar 

  45. N.K. Eswar, S.A. Singh, G. Madras, Photoconductive network structured copper oxide for simultaneous photoelectrocatalytic degradation of antibiotic (tetracycline) and bacteria. Chem. Eng. J. 332, 757–774 (2018)

    Article  CAS  Google Scholar 

  46. S. Liu, M.G. White, P. Liu, Mechanism of oxygen reduction reaction on Pt (111) in alkaline solution: importance of chemisorbed water on surface. J. Phys. Chem. C 120, 15288–15298 (2016)

    Article  CAS  Google Scholar 

  47. L. Li, X. Huang, T. Hu, J. Wang, W. Zhang, J. Zhang, Synthesis of three-dimensionally ordered macroporous composite Ag/Bi2O3–TiO2 by dual templates and its photocatalytic activities for degradation of organic pollutants under multiple modes. New J. Chem. 38, 5293–5302 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from National Natural Science Foundation of China (No. 52073200), Science Funds of Tianjin for Distinguished Young Scholar (No. 17JCJQJC44800), Key Research and Development Plan of Tianjin (No. 19YFSLQY00020), Tianjin Science and technology planning project (21YDTPJC00730).

Funding

The funding was provided by Tianjin Science and technology planning project (Grant No: 21YDTPJC00730).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MR, EL, WN and ZL. The first draft of the manuscript was written by MM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mengnan Ruan.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our works, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1108 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M., Ruan, M., Nie, W. et al. BiVO4/Bi2S3 heterojunction decorated by Pt and FeOOH double cocatalysts to enhance photoelectrochemical degradation of Rhodamine B. J Mater Sci: Mater Electron 34, 299 (2023). https://doi.org/10.1007/s10854-022-09555-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09555-1

Navigation