Skip to main content
Log in

Electrodeposition of low-cost SnS films with increasing carrier concentration and mobility by aluminum doping and texture adjustment

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

SnS is considered being a promising thermoelectric material because it has the same crystal structure as that of SnSe which has excellent thermoelectric properties. However, the low electronic transmission properties confine its performances. The difficult preparation and poor mechanism property of SnS single crystal also confined its commercial application. In this paper, we successfully doped aluminum into the SnS films by a simple one-step co-deposition method. We obtained compact aluminum-doped SnS films with orthogonal crystal structure, which was caused by the properly controlled composition. The carrier concentration of the aluminum-doped SnS films was successful increased by the increase in Al content. The resistivity was further decreased by the additives in the electrolytes because the additives changed the texture orientation and texture coefficient, which caused the change of carrier mobility. When CTAB was added into the electrolytes, the strong (200) texture formed in the aluminum-doped film which caused a relatively large carrier mobility. The combination of the large carrier mobility and concentration determined the resistivity as small as 91.82 Ω·cm. The results proved that aluminum doping can effectively increase the carrier concentration of SnS films, and the simultaneous carrier mobility decrease can be compensated by additives. The aluminum doping and additive application pave an effective way to promote the electric transition properties of SnS films which is profitable for its thermoelectric characters. And the simplicity of the co-deposition method of aluminum doping and texture adjustment exhibits a potential of commercial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. B. Qin, D. Wang, X. Liu, Y. Qin, J.F. Dong, J. Luo, J.W. Li, W. Liu, G. Tan, X. Tang, J.F. Li, J. He, L.D. Zhao, Science 373, 556 (2021)

    Article  CAS  Google Scholar 

  2. L. Su, D. Wang, S. Wang, B. Qin, Y. Wang, Y. Qin, Y. Jin, C. Chang, L.D. Zhao, Science 375, 1385 (2022)

    Article  CAS  Google Scholar 

  3. L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Nature 508, 373 (2014)

    Article  CAS  Google Scholar 

  4. L.D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V.P. Dravid, C. Uher, G.J. Snyder, C. Wolverton, M.G. Kanatzidis, Science 351, 141 (2016)

    Article  CAS  Google Scholar 

  5. Y. Xiao, L.D. Zhao, Science 367, 1196 (2020)

    Article  CAS  Google Scholar 

  6. Y. Xiao, C. Chang, Y. Pei, D. Wu, K. Peng, X. Zhou, S. Gong, J. He, Y. Zhang, Z. Zeng, L.D. Zhao, Phys. Rev. B 94, 125203 (2016)

    Article  Google Scholar 

  7. C. Chang, D. Wang, D. He, W. He, F. Zhu, G. Wang, J. He, L.D. Zhao, Adv. Energy Mater. 9, 1901334 (2019)

    Article  Google Scholar 

  8. B. Qin, D. Wang, W. He, Y. Zhang, H. Wu, S.J. Pennycook, L.D. Zhao, J. Am. Chem. Soc. 141, 1141 (2019)

    Article  CAS  Google Scholar 

  9. C. Chang, M. Wu, D. He, Y. Pei, C.F. Wu, X. Wu, H. Yu, F. Zhu, K. Wang, Y. Chen, L. Huang, J.F. Li, J. He, L.D. Zhao, Science 360, 778 (2018)

    Article  CAS  Google Scholar 

  10. T. Gotoh, Phys. Status Solidi A. 213, 1869 (2016)

    Article  CAS  Google Scholar 

  11. R. Guo, X. Wang, Y. Kuang, B. Huang, Phys. Rev. B 92, 1 (2015)

    CAS  Google Scholar 

  12. T.M. Tritt, Science 283, 804 (1999)

    Article  CAS  Google Scholar 

  13. J. Yang, L. Xi, W. Qiu, L. Wu, X. Shi, L. Chen, J. Yang, W. Zhang, C. Uher, D.J. Singh, NPJ. Comput. Mater. 2, 1 (2016)

    Article  Google Scholar 

  14. B.Z. Sun, Z. Ma, C. He, K. Wu, RSC Adv. 5, 56382 (2015)

    Article  CAS  Google Scholar 

  15. Q. Tan, C.F. Wu, W. Sun, J.F. Li, RSC Adv. 6, 43985 (2016)

    Article  CAS  Google Scholar 

  16. H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, APL Mater. 3, 041506 (2015)

    Article  Google Scholar 

  17. N.K. Singh, S. Bathula, B. Gahtori, K. Tyagi, D. Haranath, A. Dhar, J. Alloys Comp. 668, 152 (2016)

    Article  CAS  Google Scholar 

  18. E.K. Chere, Q. Zhang, K. Dahal, F. Cao, J. Mao, Z. Ren, J. Mater. Chem. A. 4, 1848 (2016)

    Article  CAS  Google Scholar 

  19. D.M. Unuchak, K. Bente, V.A. Ivanov, V.F. Gremenok, Cryst. Res. Technol. 45, 1113 (2010)

    Article  CAS  Google Scholar 

  20. W. He, D. Wang, H. Wu, Y. Xiao, Y. Zhang, D. He, Y. Feng, Y.J. Hao, J.F. Dong, R. Chetty, L. Hao, D. Chen, J. Qin, Q. Yang, X. Li, J.M. Song, Y. Zhu, W. Xu, C. Niu, X. Li, G. Wang, C. Liu, M. Ohta, S.J. Pennycook, J. He, J.F. Li, L.D. Zhao, Science 365, 1418 (2019)

    Article  CAS  Google Scholar 

  21. Y. Goto, F. Naito, R. Sato, K. Yoshiyasu, T. Itoh, Y. Kamihara, M. Matoba, Inorg. Chem. 52, 9861 (2013)

    Article  CAS  Google Scholar 

  22. V. Steinmann, R.E. Brandt, R. Chakraborty, R. Jaramillo, M. Young, B.K. Ofori-Okai, C. Yang, A. Polizzotti, K.A. Nelson, R.G. Gordon, T. Buonassisi, APL Mater. 4, 026103 (2016)

    Article  Google Scholar 

  23. M.A. Almessiere, A.L. Al-Otaibi, I.B. Assaker, T. Ghrib, R. Chtourou, Mater. Sci. Semicond. Proc. 40, 267 (2015)

    Article  Google Scholar 

  24. Y. Yang, S. Cheng, J. Semico. 29, 2322 (2008)

    CAS  Google Scholar 

  25. O. Falkenbach, J. Tinz, A.S. Schulze, E. Mueller, S. Schlecht, Phys. Status Solidi A. 213, 699 (2016)

    Article  CAS  Google Scholar 

  26. C. Bera, S. Jacob, I. Opahle, N.S. Gunda, R. Chmielowski, G. Dennler, G.K. Madsen, Phys. Chem. Chem. Phys. 16, 19894 (2014)

    Article  CAS  Google Scholar 

  27. S. Bhattacharya, N.S. Gunda, R. Stern, S. Jacobs, R. Chmielowski, G. Dennler, G.K. Madsen, Phys. Chem. Chem. Phys. 17, 9161 (2015)

    Article  CAS  Google Scholar 

  28. Y. Kawano, J. Chantana, T. Minemoto, Curr. Appl. Phys. 15, 897 (2015)

    Article  Google Scholar 

  29. J. Sun, Y. Huang, S. Nie, Z. Chen, J. Xu, L. Zhao, W. Zhou, Q. Wang, H. Gong, Mater. Lett. 178, 231 (2016)

    Article  CAS  Google Scholar 

  30. H. Zhang, Y. Balaji, A.N. Mehta, M. Heyns, M. Caymax, I. Radu, W. Vandervorst, A. Delabie, J. Mater. Chem. C 6, 6172 (2018)

    Article  CAS  Google Scholar 

  31. J. Xia, X.Z. Li, X. Huang, N. Mao, D.D. Zhu, L. Wang, H. Xu, X.M. Meng, Nanoscale 8, 2063 (2016)

    Article  CAS  Google Scholar 

  32. M. Patel, A. Ray, RSC Adv. 4, 3934 (2014)

    Article  Google Scholar 

  33. B. Ghosh, R. Roy, S. Chowdhury, P. Banerjee, S. Das, Appl. Surf. Sci. 256, 4328 (2010)

    Article  CAS  Google Scholar 

  34. H. Kafashan, F.J. Sheini, R.E. Kahrizsangi, R. Yousefi, J. Alloys Comp. 681, 595 (2016)

    Article  CAS  Google Scholar 

  35. A.A. Ramadan, A.A. Abd El-Mongy, A.M. El-Shabiny, A.T. Mater, S.H. Mostafa, E.A. El-Sheheedy, H.M. Hashem, Cryst. Res. Technol. 44, 111 (2009)

    Article  CAS  Google Scholar 

  36. H. Kafashan, R.E. Kahrizsangi, F.J. Sheini, R. Yousefi, Phys. Status Solidi A 213, 1302 (2016)

    Article  CAS  Google Scholar 

  37. C. Wu, L. Shen, H. Yu, Q. Huang, Y.C. Zhang, Mater. Res. Bull. 46, 1107 (2011)

    Article  CAS  Google Scholar 

  38. G. Kaurn, A. Mitra, K.L. Yadav, Prog. Nat. Sci. Mater. 25, 12 (2015)

    Article  Google Scholar 

  39. C.E. Benouis, M. Benhaliliba, Z. Mouffak, A.A. Garcia, A.T. Silver, M.O. Lopez, R.R. Trujillo, Y.S. Ocak, J. Alloys Compd. 603, 213 (2014)

    Article  CAS  Google Scholar 

  40. Y. Li, G. Wang, M.A. Saatlu, M. Procek, H.H. Radamson, Frontiers Mater. 8, 611078 (2021)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51472020).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by YL, and data analysis was performed by ZL and YL. The first draft of the manuscript was written by YL, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhilin Li or Feng Wang.

Ethics declarations

Competing interests

The authors declare that there is no competing interest to disclose that is directly or indirectly related to the work submitted for publication.

Research involving human and animal rights

The authors have no relevant financial or non-financial interests to disclose. This this work involved no human participants and animals and had no informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Liu, Y., Cao, K. et al. Electrodeposition of low-cost SnS films with increasing carrier concentration and mobility by aluminum doping and texture adjustment. J Mater Sci: Mater Electron 33, 26870–26880 (2022). https://doi.org/10.1007/s10854-022-09352-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09352-w

Navigation