Skip to main content
Log in

A low normalized voltage-driven and low-working-temperature electrothermal actuator based on reduced graphene oxide/PE composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electrothermal actuators (ETAs) are intelligent devices that can produce various movements from thermal expansion induced by Joule heating. In this work, to build a low normalized voltage-driven and low-working-temperature ETA, reduced graphene oxide (rGO) paper with high electrothermal performance and flexibility was adopted as the electrothermal-active materials. The high electrothermal performance of the prepared rGO-60 papers was demonstrated as that a steady-state temperature of 306.1 °C was achieved at a normalized voltage of 2.67 V. Then a bilayer-structured ETA based on rGO-60 and polyethylene (PE) was developed in a simple and mass production possible process. Under a normalized driving voltage of 0.449 V, the prepared rGO-60/PE ETA showed a bending curvature of 2.22 cm−1 at a working temperature of 43.8 °C. Finally, a simple robotic finger prepared by using a single rGO-60/PE ETA was demonstrated to hook the spitball, which is more than 16 times the weight itself. With the advantages of its low-voltage driving, low working temperature and easy to manufacture, the rGO/PE-based electrothermal actuators have a promising application in soft robotics and intelligent systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Y. Zhang, J. Li, H. Zhou et al., Electro-responsive actuators based on graphene. Innovation 2, 100168 (2021). https://doi.org/10.1016/j.xinn.2021.100168

    Article  CAS  Google Scholar 

  2. E. Acome, S.K. Mitchell, T.G. Morrissey et al., Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359, 61–65 (2018). https://doi.org/10.1126/science.aao6139

    Article  CAS  Google Scholar 

  3. H. Arazoe, D. Miyajima, K. Akaike et al., An autonomous actuator driven by fluctuations in ambient humidity. Nat. Mater. 15, 1084–1089 (2016). https://doi.org/10.1038/nmat4693

    Article  CAS  Google Scholar 

  4. X. Ji, X. Liu, V. Cacucciolo et al., An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Sci. Robot. 4, eaaz6451 (2019). https://doi.org/10.1126/scirobotics.aaz6451

    Article  Google Scholar 

  5. C. Zhao, H. Zhang, C. Song et al., Mechanisms of plant responses and adaptation to soil salinity. Innovation 1, 1–41 (2020). https://doi.org/10.1016/j.xinn.2020.100017

    Article  Google Scholar 

  6. M. Ilami, H. Bagheri, R. Ahmed et al., Materials, actuators, and sensors for soft bioinspired robots. Adv. Mater. 33, 2003139 (2020). https://doi.org/10.1002/adma.202003139

    Article  CAS  Google Scholar 

  7. J. Liang, L. Huang, N. Li et al., Electromechanical actuator with controllable motion, fast response rate, and high-frequency resonance based on graphene and polydiacetylene. ACS Nano 6, 4508–4519 (2012). https://doi.org/10.1021/nn3006812

    Article  CAS  Google Scholar 

  8. H. Kim, H. Lee, I. Ha et al., Biomimetic color changing anisotropic soft actuators with integrated metal nanowire percolation network transparent heaters for soft robotics. Adv. Funct. Mater. 28, 1801841–1801847 (2018)

    Article  Google Scholar 

  9. Y. Hu, G. Wu, T. Lan et al., A graphene-based bimorph structure for design of high performance photoactuators. Adv. Mater. 27, 7867–7873 (2015). https://doi.org/10.1002/adma.201502777

    Article  CAS  Google Scholar 

  10. J. Wang, D. Gao, P.S. Lee, Recent progress in artificial muscles for interactive soft robotics. Adv. Mater. 33, 2003088 (2021). https://doi.org/10.1002/adma.202003088

    Article  CAS  Google Scholar 

  11. D. Jia, W.J. Yuan, Research progress in electromechanical artificial muscles. Polym. Bull. 8, 27–38 (2017). https://doi.org/10.14028/j.cnki.1003-3726.2017.08.004

    Article  Google Scholar 

  12. R. Pelrine, R. Kornbluh, G. Kofod, High-strain actuator materials based on dielectric elastomers. Adv. Mater. 12, 1223–1225 (2000). https://doi.org/10.1002/1521-4095(200008)12:16%3c1223::AID-ADMA1223%3e3.0.CO;2-2

    Article  CAS  Google Scholar 

  13. R.S. Diteesawat, T. Helps, M. Taghavi et al., Electro-pneumatic pumps for soft robotics. Sci. Robot. 6, eabc3721 (2021). https://doi.org/10.1126/scirobotics.abc3721

    Article  Google Scholar 

  14. B. Kim, Y.D. Park, K. Min et al., Electric actuation of nanostructured thermoplastic elastomer gels with ultralarge electrostriction coefficients. Adv. Funct. Mater. 21, 3242–3249 (2011). https://doi.org/10.1002/adfm.201100298

    Article  CAS  Google Scholar 

  15. R. Pelrine, R. Kornbluh, Q. Pei et al., High-speed electrically actuated elastomers with strain greater than 100%. Science 287, 836–839 (2000). https://doi.org/10.1126/science.287.5454.836

    Article  CAS  Google Scholar 

  16. T.Y. Zhang, Q. Wang, N.Q. Deng et al., A large-strain, fast-response, and easy-to-manufacture electrothermal actuator based on laser-reduced graphene oxide. Appl. Phys. Lett. 111, 121901 (2017). https://doi.org/10.1063/1.5003610

    Article  CAS  Google Scholar 

  17. Y. Huang, W. Hu et al., A low-voltage graphene/Ag-based phase transition-controlled force actuator. Compos. B Eng. 174, 106912 (2019). https://doi.org/10.1016/j.compositesb.2019.106912

    Article  CAS  Google Scholar 

  18. Y.C. Sun, B.D. Leaker, J.E. Lee et al., Shape programming of polymeric based electrothermal actuator (ETA) via artificially induced stress relaxation. Sci. Rep. 9, 1–12 (2019). https://doi.org/10.1038/s41598-019-47949-0

    Article  CAS  Google Scholar 

  19. D.K. Seo, T.J. Kang, D.W. Kim et al., Twistable and bendable actuator: a CNT/polymer sandwich structure driven by thermal gradient. Nanotechnology 23, 75501 (2012). https://doi.org/10.1088/0957-4484/23/7/075501

    Article  CAS  Google Scholar 

  20. L. Chen, C. Liu, K. Liu et al., High-performance, low-voltage, and easy-operable bending actuator based on aligned carbon nanotube/polymer composites. ACS Nano 5, 1588–1593 (2011). https://doi.org/10.1021/nn102251a

    Article  CAS  Google Scholar 

  21. Q. Li, C. Liu, Y.H. Lin et al., Large-strain, multiform movements from designable electrothermal actuators based on large highly anisotropic carbon nanotube sheets. ACS Nano 9, 409–418 (2015). https://doi.org/10.1021/nn505535k

    Article  CAS  Google Scholar 

  22. Y. Hu, T. Lan, G. Wu et al., Novel electromechanical actuation based on a spongy graphene paper. Chem. Commun. 50, 4951–4954 (2014). https://doi.org/10.1039/c3cc49376h

    Article  CAS  Google Scholar 

  23. M.A. Aouraghe, F. Xu, X. Liu et al., Flexible, quickly responsive and highly efficient E-heating carbon nanotube film. Compos. Sci. Technol. 183, 107824 (2019). https://doi.org/10.1016/j.compscitech.2019.107824

    Article  CAS  Google Scholar 

  24. L. Zhu, Y.Y. Gao, B. Han et al., Laser fabrication of graphene-based electrothermal actuators enabling predicable deformation. Opt. Lett. 44, 1363 (2019). https://doi.org/10.1364/OL.44.001363

    Article  CAS  Google Scholar 

  25. Q. Wang, Y. Li, T. Zhang et al., Low-voltage, large-strain soft electrothermal actuators based on laser-reduced graphene oxide/Ag particle composites. Appl. Phys. Lett. 112, 133902 (2018). https://doi.org/10.1063/1.5020918

    Article  CAS  Google Scholar 

  26. N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin et al., Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 11, 771–778 (1999). https://doi.org/10.1021/cm981085u

    Article  CAS  Google Scholar 

  27. L. Dong, C. Hu et al., A large-area, flexible, and flame-retardant graphene paper. Adv. Funct. Mater. 26, 1470–1476 (2016). https://doi.org/10.1002/adfm.201504470

    Article  CAS  Google Scholar 

  28. L. Sheng, Y. Liang, L. Jiang et al., Bubble-decorated honeycomb-like graphene film as ultrahigh sensitivity pressure sensors. Adv. Funct. Mater. 25, 6545–6551 (2015). https://doi.org/10.1002/adfm.201502960

    Article  CAS  Google Scholar 

  29. H.Q. Li, L. Chen, P.F. Jin et al., NiCo2S4 microspheres grown on N, S co-doped reduced graphene oxide as an efficient bifunctional electrocatalyst for overall water splitting in alkaline and neutral pH. Nano Res. 15, 950–958 (2022). https://doi.org/10.1007/s12274-021-3580-z

    Article  CAS  Google Scholar 

  30. J.X. Pang, H.H. Fu, W.W. Kong et al., Design of NiCo2O4 nanoparticles decorated N, S co-doped reduced graphene oxide composites for electrochemical simultaneous detection of trace multiple heavy metal ions and hydrogen evolution reaction. Chem. Eng. J. 433, 133854 (2022). https://doi.org/10.1016/j.cej.2021.133854

    Article  CAS  Google Scholar 

  31. H. Tian, H. Chen, T. Ren et al., Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology. Nano Lett. 14, 3214–3219 (2014). https://doi.org/10.1021/nl5005916

    Article  CAS  Google Scholar 

  32. Y.G. Jeong, G.W. Jeon, Microstructure and performance of multiwalled carbon nanotube/m-aramid composite films as electric heating elements. ACS Appl. Mater. Interfaces 5, 6527–6534 (2013). https://doi.org/10.1021/am400892k

    Article  CAS  Google Scholar 

  33. C. Celle, C. Mayousse, E. Moreau et al., Highly flexible transparent film heaters based on random networks of silver nanowires. Nano Res. 5, 427–433 (2012). https://doi.org/10.1007/s12274-012-0225-2

    Article  CAS  Google Scholar 

  34. D. Sui, Y. Huang, L. Huang et al., Flexible and transparent electrothermal film heaters based on graphene materials. Small 7, 3186–3192 (2011). https://doi.org/10.1002/smll.201101305

    Article  CAS  Google Scholar 

  35. T. Kim, Y.W. Kim, H.S. Lee et al., Uniformly interconnected silver-nanowire networks for transparent film heaters. Adv. Funct. Mater. 23, 1250–1255 (2013). https://doi.org/10.1002/adfm.201202013

    Article  CAS  Google Scholar 

  36. Y.H. Yoon, J.W. Song, D. Kim et al., Transparent film heater using single-walled carbon nanotubes. Adv. Mater. 19, 4284–4287 (2007). https://doi.org/10.1002/adma.200701173

    Article  CAS  Google Scholar 

  37. T. Zhang, H. Zhao, D. Wang et al., A super flexible and custom-shaped graphene heater. Nanoscale 9, 14357–14363 (2017). https://doi.org/10.1039/c7nr02219k

    Article  CAS  Google Scholar 

  38. L.R. Shobin, S. Manivannan, Enhancement of electrothermal performance in single-walled carbon nanotube transparent heaters by room temperature post treatment. Sol. Energy Mater. Sol. Cells 174, 469–477 (2018). https://doi.org/10.1016/j.solmat.2017.09.041

    Article  CAS  Google Scholar 

  39. F. Wang, K. Zhang, W. Liang et al., Experimental and analytical studies on the flexible, low-voltage electrothermal film based on the multi-walled carbon nanotube/polymer nanocomposite. Nanotechnology 30, 65704 (2018). https://doi.org/10.1088/1361-6528/aaf195

    Article  CAS  Google Scholar 

  40. J. Luo, H. Lu, Q. Zhang et al., Flexible carbon nanotube/polyurethane electrothermal films. Carbon 110, 343–349 (2016). https://doi.org/10.1016/j.carbon.2016.09.016

    Article  CAS  Google Scholar 

  41. X. Zhang, D. Li, K. Liu et al., Flexible graphene-coated carbon fiber veil/polydimethylsiloxane mats as electrothermal materials with rapid responsiveness. Int. J. Lightweight Mater. Manuf. 2, 241–249 (2019). https://doi.org/10.1016/j.ijlmm.2019.04.002

    Article  Google Scholar 

  42. K. Shin, J. Hong, S. Lee et al., High electrothermal performance of expanded graphite nanoplatelet-based patch heater. J. Mater. Chem. 22, 23404–23410 (2012). https://doi.org/10.1039/C2JM34196D

    Article  CAS  Google Scholar 

  43. S. Lin, T. Zhang, Q. Lu et al., High-performance graphene-based flexible heater for wearable applications. RSC Adv. 7, 27001–27006 (2017). https://doi.org/10.1039/C7RA03181E

    Article  CAS  Google Scholar 

  44. J. Kang, H. Kim, K.S. Kim et al., High-performance graphene-based transparent flexible heaters. Nano Lett. 11, 5154–5158 (2011). https://doi.org/10.1021/nl202311v

    Article  CAS  Google Scholar 

  45. T. Zhang, H. Zhao, Z. Yang et al., Improved electrothermal performance of custom-shaped micro heater based on anisotropic laser-reduced graphene oxide. Appl. Phys. Lett. 109, 151905 (2016). https://doi.org/10.1063/1.4963861

    Article  CAS  Google Scholar 

  46. H. Chang, Y. Jia, L. Xiao et al., Three dimensional cross-linked and flexible graphene composite paper with ultrafast electrothermal response at ultra-low voltage. Carbon 154, 150–155 (2019). https://doi.org/10.1016/j.carbon.2019.08.008

    Article  CAS  Google Scholar 

  47. Y. Guo, C. Dun, J. Xu et al., Ultrathin, washable, and large-area graphene papers for personal thermal management. Small 13, 1702645 (2017). https://doi.org/10.1002/smll.201702645

    Article  CAS  Google Scholar 

  48. Y. Zhou, H. Bi, X. Xie, et al., Fabrication of graphene based electrothermal cantilever actuator, The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 911–914 (2013). https://doi.org/10.1109/NEMS.2013.6559871

Download references

Funding

This work was supported by the National Natural Science Foundation of China (61774084), the Priority Academic Program Development of Jiangsu Higher Education Institutions, the special fund of Jiangsu Province for the transformation of scientific and technological achievements (BA2021093), the open project of Key Laboratory of Materials Preparation and Protection for Harsh Environment, Ministry of Industry and Information Technology (XCA20013-3), and funding of Jiangsu Innovation Program for Graduate Education (KYCX19_0175).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by YY, HS, ZY, KG, ZW, and JY. The first draft of the manuscript was written by YY, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Honglie Shen.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 4411 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Shen, H., Yang, Z. et al. A low normalized voltage-driven and low-working-temperature electrothermal actuator based on reduced graphene oxide/PE composites. J Mater Sci: Mater Electron 33, 22759–22772 (2022). https://doi.org/10.1007/s10854-022-09043-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09043-6

Navigation