Skip to main content
Log in

Effects of cation doping on thermoelectric properties of Bi2S3 materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bi2S3 polycrystals doped with Al, Mn, Ag, and In were fabricated by vacuum melting and plasma activated sintering process, and the phase, microstructure, electrical, and thermal properties were investigated. The electrical conductivity is enhanced via Al and Ag doping. Compared with the Ag dopant, a higher electrical conductivity is achieved in the Al-doped sample, resulting in a peak power factor value of 1.96 μW/cmK2 at 423 K. Meanwhile, the thermal conductivity of Bi1.99Al0.01S3 sample is very low in the Bi2S3 system due to the high-density defects, and is only 0.39 Wm−1 K−1 at 740 K. By combining a power factor and a low thermal conductivity, a peak ZT value of 0.29 at 740 K is achieved in the Bi1.99Al0.01S3 sample, being about two times larger than that of pristine Bi2S3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)

    Article  Google Scholar 

  2. C.J. Zhou, Y. Yu, Y.L. Lee, B.Z. Ge, W.Q. Lu, O. Cojocaru-Mirédin, J. Im, S.P. Cho, M. Wuttig, Z.Q. Shi, I. Chung, Exceptionally high average power factor and thermoelectric figure of merit in n-type PbSe by the dual incorporation of Cu and Te. J. Am. Chem. Soc. 142, 15172–15186 (2020)

    Article  CAS  Google Scholar 

  3. L.D. Zhao, S.H. Lo, Y.S. Zhang, H. Sun, G.J. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373–377 (2014)

    Article  CAS  Google Scholar 

  4. Y. Li, G.L. Wang, M. Akbari-Saatlu, M. Procek, H.H. Radamson, Si and SiGe nanowire for micro-thermoelectric generator: A review of the current state of the art. Front. Mater. 8, 611078 (2021)

    Article  Google Scholar 

  5. B.B. Lu, M.Y. Wang, J. Yang, H.G. Hou, X.Z. Zhang, Z.Q. Shi, J.L. Liu, G.J. Qiao, G.W. Liu, Dense twin and domain boundaries lead to high thermoelectric performance in Sn-doped Cu3SbS4. Appl. Phys. Lett. 120, 173901 (2022)

    Article  CAS  Google Scholar 

  6. J. Yang, G.W. Liu, Z.Q. Shi, J.P. Lin, X. Ma, Z.W. Xu, G.J. Qiao, An insight into β-Zn4Sb3 from its crystal structure, thermoelectric performance, thermal stability and graded material. Mater. Today Energy 3, 72–83 (2017)

    Article  Google Scholar 

  7. L.P. Hu, T.J. Zhu, X.H. Liu, X.B. Zhao, Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Adv. Funct. Mater. 24, 5211–5218 (2014)

    Article  CAS  Google Scholar 

  8. S. Bajaj, G.S. Pomrehn, J.W. Doak, W. Gierlotka, H. Wu, S.W. Chen, C. Wolverton, W.A. Goddard, G.J. Snyder, Ab initio study of intrinsic point defects in PbTe: an insight into phase stability. Acta Mater. 92, 72–80 (2015)

    Article  CAS  Google Scholar 

  9. L.J. Li, S. Liang, S.M. Li, J.L. Wang, S.F. Wang, G.Y. Dong, G.S. Fu, Enhanced thermoelectric performance in CdO by nano-SiO2 inclusions. Nanotechnology 25, 425402 (2014)

    Article  Google Scholar 

  10. N. Satyala, A.T. Rad, Z. Zamanipour, P. Norouzzadeh, J.S. Krasinski, L. Tayebi, D. Vashaee, Reduction of thermal conductivity of bulk nanostructured bismuth telluride composites embedded with silicon nano-inclusions. J. Appl. Phys. 115, 044304 (2014)

    Article  Google Scholar 

  11. S.L. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee, G.J. Snyder, S.W. Kim, Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 6230, 109–114 (2015)

    Article  Google Scholar 

  12. X.F. Meng, Z.H. Liu, B. Cui, D.D. Qin, H.Y. Geng, W. Cai, L.W. Fu, J.Q. He, Z.F. Ren, J.H. Sui, Grain boundary engineering for achieving high thermoelectric performance in n-type skutterudites. Adv. Energy Mater. 7, 1602582 (2017)

    Article  Google Scholar 

  13. H.Y. Lv, W.J. Lu, D.F. Shao, Y.P. Sun, Enhanced thermoelectric performance of phosphorene by strain-induced band convergence. Phy. Rev. B 90, 085433 (2014)

    Article  CAS  Google Scholar 

  14. S.Y. Wang, Y.X. Sun, J. Yang, B. Duan, L.H. Wu, W.Q. Zhang, J.H. Yang, High thermoelectric performance in Te-free (Bi, Sb)2Se3 via structural transition induced band convergence and chemical bond softening. Energy Environ. Sci. 9, 3436–3447 (2016)

    Article  Google Scholar 

  15. A. Banik, U.S. Shenoy, S. Saha, U.V. Waghmare, K. Biswas, High power factor and enhanced thermoelectric performance of SnTe-AgInTe2: synergistic effect of resonance level and valence band convergence. J. Am. Chem. Soc. 138, 13068–13075 (2016)

    Article  CAS  Google Scholar 

  16. M. Zhou, Z.M. Gibbs, H. Wang, Y.M. Han, L.F. Li, G.J. Snyder, Thermoelectric performance of co-doped SnTe with resonant levels. Appl. Phys. Lett. 109, 042102 (2016)

    Article  Google Scholar 

  17. Y. Pei, Z.M. Gibbs, A. Gloskovskii, B. Balke, W.G. Zeier, G.J. Snyder, Optimum carrier concentration in n-type PbTe thermoelectrics. Adv. Energy Mater. 4, 1400486 (2014)

    Article  Google Scholar 

  18. J.D. Boor, S. Gupta, H. Kolb, T. Dasgupta, E. Muller, Thermoelectric transport and microstructure of optimized Mg2Si0.8Sn0.2. J. Mater. Chem. C 3, 10467–10475 (2015)

    Article  Google Scholar 

  19. C.J. Zhou, Y.K. Lee, Y. Yu, S. Byun, Z.Z. Luo, H. Lee, B.Z. Ge, Y.L. Lee, X.Q. Chen, J.Y. Lee, O. Cojocaru-Mirédin, H. Chang, J. Im, S.P. Cho, M. Wuttig, V.P. Dravid, M.G. Kanatzidis, I. Chung, Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal. Nat. Mater. 20, 1378–1384 (2021)

    Article  CAS  Google Scholar 

  20. L.J. Zhao, M.Y. Wang, J. Yang, J.B. Hu, Y. Zhu, G.W. Liu, S. Hussain, H.C. Shao, S.Y. Lei, N. Wan, Z.Q. Shi, G.J. Qiao, Enhanced thermoelectric properties of Cu3SbSe4 compounds by isovalent bismuth doping. J. Mater. Sci. Mater. Electron. 32, 18849–18861 (2021)

    Article  CAS  Google Scholar 

  21. B.Z. Ge, H. Lee, C.J. Zhou, W.Q. Lu, J.B. Hu, J. Yang, S.P. Cho, G.J. Qiao, Z.Q. Shi, I. Chung, Exceptionally low thermal conductivity realized in the chalcopyrite CuFeS2 via atomic-level lattice engineering. Nano Energy 94, 106941 (2022)

    Article  CAS  Google Scholar 

  22. C.L. Wan, X.K. Gu, F. Dang, T. Itoh, Y.F. Wang, H. Sasahi, M. Kondo, K. Koga, K. Yabuki, G.J. Snyder, R. Yang, K. Koumoto, Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 14(622–62), 7 (2015)

    Google Scholar 

  23. Y.S. Hor, A. Richardella, P. Roushan, Y. Xia, J.G. Checkelsky, A. Yazdani, M.Z. Hasan, N.P. Ong, R.J. Cava, P-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications. Phys. Rev. B 79, 195208 (2009)

    Article  Google Scholar 

  24. A. Singh, P. Shahi, A.K. Ghosh, J.G. Cheng, S. Chatterjee, Enhancement in power factor due to anti-correlation between electrical conductivity and thermoelectric power and induced magnetic ordering in high mobility Zn doped Bi2Te3 topological insulator. J. Alloys Compd. 731, 297–302 (2018)

    Article  CAS  Google Scholar 

  25. H. Osterhage, J. Gooth, B. Hamdou, P. Gwozdz, R. Zierold, K. Nielsch, Thermoelectric properties of topological insulator Bi2Te3, Sb2Te3, and Bi2Se3 thin film quantum wells. Appl. Phys. Lett. 105, 123117 (2014)

    Article  Google Scholar 

  26. J. Black, E.M. Conwell, L. Seigle, C.W. Spencer, Electrical and optical properties of some M2V-B and M2VI-B semiconductors. J. Phys. Chem. Solids 2, 240–251 (1957)

    Article  CAS  Google Scholar 

  27. K. Biswas, L.D. Zhao, M.G. Kanatzidis, Tellurium-free thermoelectric: The anisotropic n-type semiconductor Bi2S3. Adv. Energy Mater. 2, 634–638 (2012)

    Article  CAS  Google Scholar 

  28. J. Yang, G.W. Liu, J.N. Yan, X.Z. Zhang, Z.Q. Shi, G.J. Qiao, Enhanced the thermoelectric properties of n-type Bi2S3 polycrystalline by iodine doping. J. Alloys Compd. 728, 351–356 (2017)

    Article  CAS  Google Scholar 

  29. J. Yang, J.N. Yan, G.W. Liu, Z.Q. Shi, G.J. Qiao, Improved thermoelectric properties of n-type Bi2S3 via grain boundaries and in-situ nanoprecipitates. J Eur. Ceram. Soc. 39, 1214–1221 (2019)

    Article  CAS  Google Scholar 

  30. J. Guo, Y.X. Zhang, Z.Y. Wang, F.S. Zheng, Z.H. Ge, J.C. Fu, J. Feng, High thermoelectric properties realized in earth-abundant Bi2S3 bulk via carrier modulation and multi-nano-precipitates synergy. Nano Energy 78, 105227 (2020)

    Article  CAS  Google Scholar 

  31. W.T. Ji, X.L. Shi, W.D. Liu, H.L. Yuan, K. Zheng, B. Wan, W.X. Shen, Z.F. Zhang, C. Fang, Q.Q. Wang, L.C. Chen, Y.W. Zhang, X.P. Jia, Z.G. Chen, Boosting the thermoelectric performance of n-type Bi2S3 by hierarchical structure manipulation and carrier density optimization. Nano Energy 87, 106171 (2021)

    Article  CAS  Google Scholar 

  32. J. Pei, L.J. Zhang, B.P. Zhang, P.P. Shang, Y.C. Liu, Enhancing thermoelectric performance of CexBi2S3 by optimizing carrier concentration combined with band engineering. J. Mater. Chem. C 5, 12492–12499 (2017)

    Article  CAS  Google Scholar 

  33. Z.H. Ge, B.P. Zhang, Y. Liu, J.F. Li, Nanostructured Bi2-xCuxS3 bulk materials with enhanced thermoelectric performance. Phys. Chem. Chem. Phys. 14, 4475–4481 (2012)

    Article  CAS  Google Scholar 

  34. D. Han, M.H. Du, C.M. Dai, D. Sun, S. Chen, Influence of defects and dopants on the photovoltaic performance of Bi2S3: First-principles insights. J. Mater. Chem. A 5, 6200–6210 (2017)

    Article  CAS  Google Scholar 

  35. L. Yang, Y. Tao, J.Y. Liu, C.H. Liu, Q. Zhang, M. Akter, Y. Zhao, T.T. Xu, Y.Q. Xu, Z.Q. Mao, Y.F. Chen, D.Y. Li, Distinct signatures of electron–phonon coupling observed in the lattice thermal conductivity of NbSe3 nanowires. Nano Lett. 19, 415–421 (2019)

    Article  CAS  Google Scholar 

  36. M. Zhou, J.F. Li, T. Kita, Nanostructured AgPbmSbTem+2 system bulk materials with enhanced thermoelectric performance. J. Am. Chem. Soc. 130, 4527–4532 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52172069, 51572111), the Natural Science Foundation (BK20210779), Universities Natural Science Research Project (21KJB430019), Qing Lan Project ([2016]15) and Innovation/Entrepreneurship Program [(2021)] of Jiangsu Province.

Funding

National Natural Science Foundation of China, 52172069, Guanjun Qiao, 51572111, Guanjun Qiao, Natural Science Foundation of Jiangsu Province,BK20210779, Jian Yang, Natural Science Research of Jiangsu Higher Education Institutions of China, 21KJB430019, Jian Yang, Qinglan Project of Jiangsu Province of China, [2016]15, Guanjun Qiao, the Innovation/Entrepreneurship Program of Jiangsu Province, [2021].

Author information

Authors and Affiliations

Authors

Contributions

HH performed the experiment; HH, JY, and XZ performed the data analyses and wrote the manuscript; GL and GQ performed the analysis with constructive discussions.

Corresponding author

Correspondence to Jian Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, H., Yang, J., Liu, G. et al. Effects of cation doping on thermoelectric properties of Bi2S3 materials. J Mater Sci: Mater Electron 33, 22291–22299 (2022). https://doi.org/10.1007/s10854-022-09007-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09007-w

Navigation