Skip to main content
Log in

Effect of interdigital transducers structure on insertion loss of high-frequency surface acoustic wave devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

With the development of information technology, surface acoustic wave (SAW) devices are strongly required to exhibit higher integration, and lower insertion loss, as well as complementary metal oxide semiconductor (CMOS), processes compatibility. Aluminum nitride (AlN) is an excellent piezoelectric material that is compatible with CMOS processes; however, the insertion loss for AlN/Si SAW devices is high under conventional interdigital transducers (IDT) structure. In this work, AlN piezoelectric film-based floating electrode unidirectional transducers (FEUDT) structures are developed, and its propagation characteristics are simulated with the help of finite-element method (FEM). By Fourier transforming the corresponding time response, the insertion loss of the devices is calculated to be − 15.52 (forward) and − 22.94 dB (backward). According to simulation structure, FEUDT and IDT-structured devices with 3.6 μm wavelength are fabricated by electron beam lithography, and operating frequency of both devices reached 1.4 GHz, which is basically consistent with simulation results, and insertion loss of floating electrode unidirectional transducers structures is about 11 dB lower than that of conventional structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. D.C. Malocha, Acoustoelectric amplifier model using coupling of modes and charge control analysis. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68(8), 2794–2803 (2021). https://doi.org/10.1109/TUFFC.2021.3073892

    Article  Google Scholar 

  2. Y. Zhu, G. Fan, L. Huang et al., Integrated acousto-optic interaction at ultrahigh frequencies. Opt. Commun. 497, 1–5 (2021). https://doi.org/10.1016/j.optcom.2021.127174

    Article  CAS  Google Scholar 

  3. K.S. Pasupuleti, M. Reddeppa, D.J. Nam et al., Boosting of NO2 gas sensing performances using GO-PEDOT: PSS nanocomposite chemical interface coated on langasite-based surface acoustic wave sensor. Sens. Actuators B Chem. 344, 1–12 (2021). https://doi.org/10.1016/j.snb.2021.130267

    Article  CAS  Google Scholar 

  4. Y. Wang, C. Xu, D. Mei et al., Tunable patterning of microscale particles using a surface acoustic wave device with slanted-finger interdigital transducers. J. Zhejiang Univ. Sci. A 22, 331–343 (2021). https://doi.org/10.1631/jzus.A2000501

    Article  CAS  Google Scholar 

  5. K. Länge, B.E. Rapp, M. Rapp, Surface acoustic wave biosensors: a review. Anal. Bioanal. Chem. 391, 1509–1519 (2008). https://doi.org/10.1007/s00216-008-1911-5

    Article  CAS  Google Scholar 

  6. Z. Lu, S. Fu, Z. Chen et al., High-frequency and high-temperature stable surface acoustic wave devices on ZnO/SiO2/SiC structure. J. Phys. D 53(30), 1–21 (2020). https://doi.org/10.1088/1361-6463/ab8324

    Article  CAS  Google Scholar 

  7. Y. Liu, Y. Cai, Y. Zhang et al., Materials, design, and characteristics of bulk acoustic wave resonator: a review. Micromachines. 11(7), 630–656 (2020). https://doi.org/10.3390/mi11070630

    Article  CAS  Google Scholar 

  8. L. Wei, X. Kuai, Y. Bao, J. Wei et al., The recent progress of MEMS/NEMS resonators. Micromac-hines 12(6), 724 (2021). https://doi.org/10.3390/mi12060724

    Article  Google Scholar 

  9. M.Z. Aslam, V. Jeoti, S. Karuppanan, A.F. Malik et al., FEM analysis of sezawa mode SAW sensor for VOC based on CMOS compatible AlN/SiO2/Si multilayer structure. Sensors 18(6), 1687 (2018). https://doi.org/10.3390/s18061687

    Article  CAS  Google Scholar 

  10. A.A.M. Ralib, A.N. Nordin, A.Z. Alam et al., Piezoelectric thin films for double electrode CMOS MEMS surface acoustic wave (SAW) resonator. Microsyst. Technol. 21, 1931 (2015). https://doi.org/10.1007/s00542-014-2319-0

    Article  CAS  Google Scholar 

  11. G. Bu, D. Ciplys, M. Shur et al., Surface acoustic wave velocity in single-crystal AlN substrates. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 251–254 (2006). https://doi.org/10.1109/TUFFC.2006.1588412

    Article  Google Scholar 

  12. K. Li, F. Wang, M. Deng et al., Microstructure and bending piezoelectric characteristics of AlN film for high-frequency flexible SAW devices. J. Mater. Sci: Mater. Electron. 32, 13146–13155 (2021). https://doi.org/10.1007/s10854-021-05830-9

    Article  CAS  Google Scholar 

  13. B. Fu, F. Wang, R. Cao et al., Optimization of the annealing process and nanoscale piezoelectric properties of (002) AlN thin films. J. Mater. Sci: Mater. Electron. 28, 9295–9300 (2017). https://doi.org/10.1007/s10854-017-6666-3

    Article  CAS  Google Scholar 

  14. W. Wang, P.M. Mayrhofer, X. He et al., High performance AlScN thin film-based surface acoustic wave devices with large electromechanical coupling coefficient. Appl. Phys. Lett. 105(13), 133502 (2014). https://doi.org/10.1063/1.4896853

    Article  CAS  Google Scholar 

  15. W.B. Wang, Y.Q. Fu, J.J. Chen et al., AlScN thin film-based surface acoustic wave devices with enhanced microfluidic performance. J. Micromech. Microeng. 26(7), 1–8 (2016). https://doi.org/10.1088/0960-1317/26/7/075006

    Article  CAS  Google Scholar 

  16. E. Dai, Technique for low-loss and wideband surface acoustic wave filters. Electron. Lett. 36(22), 1904–1905 (2002). https://doi.org/10.1049/el:20001305

    Article  Google Scholar 

  17. K. Yamanouchi, H. Furuyashiki, New low-loss SAW filter using internal floating electrode reflection types of single-phase unidirectional transducer. Electron. Lett. 20(24), 989–990 (1984). https://doi.org/10.1049/el:19840672

    Article  Google Scholar 

  18. K. Yamanouchi, H. Furuyashiki, S.A.W. Low-Loss, Filter using internal reflection types of new single-phase unidirectional transducer. Electron. Lett. 20(20), 819–821 (1984). https://doi.org/10.1049/el:19840557

    Article  CAS  Google Scholar 

  19. P.V. Wright, The natural single-phase unidirectional transducer: a new low-loss SAW transducer. Ultrason. Symp. IEEE (1985). https://doi.org/10.1109/ULTSYM.1985.198478

    Article  Google Scholar 

  20. K. Hanma, B.J. Hunsinger, A triple transit suppression technique. Ultrason. Symp. IEEE (1976). https://doi.org/10.1109/ULTSYM.1976.196692

    Article  Google Scholar 

  21. T. Kodama, H. Kawabata, Y. Yasuhara, H. Sato, Design of low-loss SAW filters employing distributed acoustic reflection transducers. Ultrason. Symp. IEEE (1986). https://doi.org/10.1109/ULTSYM.1986.198710

    Article  Google Scholar 

  22. C.S. Hartmann, B.P. Abbott, Overview of design challenges for single phase unidirectional SAW filters. Ultrason. Symp. IEEE (1989). https://doi.org/10.1109/ULTSYM.1989.66963

    Article  Google Scholar 

  23. H. Nakamura, T. Yamada, T. Igaki, K. Nishimura, T. Ishizaki, K. Ogawa, A practical SPUDT design for SAW filters with different-width split-finger interdigital transducers. Ultrason. Symp. IEEE. (2000). https://doi.org/10.1109/ULTSYM.2000.922517

    Article  Google Scholar 

  24. F. Huang, Possible design procedure for low-loss 180 degrees reflecting arrays in SAW devices. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35(1), 57–60 (1988). (414 8)

    Article  CAS  Google Scholar 

  25. J.X. Zhai, C. Chen, Low-loss floating electrode unidirectional transducer for SAW sensor. Acoust. Phys. 65(2), 178–184 (2019). https://doi.org/10.1134/S106377101902012X

    Article  Google Scholar 

  26. S. Maouhoub, Y. Aoura, A. Mir, FEM simulation of Rayleigh waves for SAW devices based on ZnO/AlN/Si. Microelectron. Eng. 136, 22–25 (2015). https://doi.org/10.1016/j.mee.2015.03.042

    Article  CAS  Google Scholar 

  27. D.S. Ballantine Jr., R.M. White, S.J. Martin et al., Acoustic wave sensors: Theory, design and physico-chemical applications[M], vol. 63 (Elsevier, Asterdam, 1996), pp.79–79

    Google Scholar 

  28. L.L. Brizoual, O. Elmazria, FEM modeling of AlN/diamond surface acoustic waves device. Diam. Relat. Mater. 16(4–7), 987–990 (2007). https://doi.org/10.1016/j.diamond.2007.01.002

    Article  CAS  Google Scholar 

  29. M. Takeuchi, K. Yamanouchi, Coupled mode analysis of SAW floating electrode type unidirectional transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40(6), 648–658 (1993). https://doi.org/10.1109/58.248207

    Article  CAS  Google Scholar 

  30. S. Menzel, M. Pekarčikova, M. Hofmann et al., Material transport in Al-metallizations of power-loaded SAW structures. Appl. Surf. Sci. 252(1), 215–217 (2005). https://doi.org/10.1016/j.apsusc.2005.02.020

    Article  CAS  Google Scholar 

  31. I.Y. Huang, C.Y. Lin, J.W. Lan, Improving thin-film zinc-oxide surface acoustic wave device insertion loss using a grooved reflective grating structure. J. Micro Nanolithogr MEMS MOEMS 12(1), 1–10 (2013). https://doi.org/10.1117/1.JMM.12.1.013019

    Article  Google Scholar 

  32. D. Wang, Y. Chen, Z. Yao et al., The design of silicon substrate AlN ellipse IDT structure SAW filter. Chin. J. Sens. Actuators 26(12), 1691–1694 (2013). https://doi.org/10.3969/j.issn.1004-1699.2013.12.013

    Article  Google Scholar 

  33. L. Wang, S. Chen, J. Zhang et al., Enhanced performance of 17.7 GHz SAW devices based on AlN/diamond/Si layered structure with embedded nanotransducer. Appl. Phys. Lett. 111(25), 253502 (2017). https://doi.org/10.1063/1.5006884

    Article  CAS  Google Scholar 

  34. Y. Ai, S. Yang, Z. Cheng et al., Enhanced performance of AlN SAW devices with wave propagation along the <11–20> direction on c-plane sapphire substrate. J. Phys. D 52(21), 215103 (2019). https://doi.org/10.1088/1361-6463/ab0bf6

    Article  CAS  Google Scholar 

  35. W. Wang, P.M. Mayrhofer, X. He et al., High performance AlScN thin film based surface acoustic wave devices with large electromechanical coupling coefficient. Appl. Phys. Lett. 105, 133502 (2014). https://doi.org/10.1063/1.4896853

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Science and Technology Planning Project of Tianjin City (20ZYQCGX00070), Open project of state Key Laboratory of Functional Materials for Information (SKL202007), the Natural Science Foundation of Tianjin City (18JCzDJC30500 and 18JCYBJC85700), Research and Development Program in Significant Area of Guangdong Province (2020B0101040002), Tianjin Enterprise Science and Technology Commissioner Project (19JCTPJC56200), National Natural Science Foundation of China (Grant No. 62001326).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by LL, FW, KL, and KZ. The first draft of the manuscript was written by LL, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. LL, KL, KZ, FW, and YH: Conceptualization, DK, KH: Methodology, YX, ZS, LQ: Formal analysis and investigation,   LL, KL: Writing—original draft preparation, LL, KZ, FW: Writing—review and editing,  KZ, FW, YH: Funding acquisition DS: Resources, KZ: Supervision.

Corresponding authors

Correspondence to Yemei Han or Kailiang Zhang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Wang, F., Li, K. et al. Effect of interdigital transducers structure on insertion loss of high-frequency surface acoustic wave devices. J Mater Sci: Mater Electron 33, 22017–22026 (2022). https://doi.org/10.1007/s10854-022-08993-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08993-1

Navigation