Skip to main content
Log in

Effect of Cu interlayer on opto-electrical parameters of ZnO thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, we focused our attention on the tailoring of structure and optical analysis as a function of Cu interlayer between the ZnO layers. The Cu interlayer was deposited by magnetron sputtering, while the ZnO layers were deposited by atomic layer deposition. Morphological analysis, based on grazing incident X-ray diffraction patterns and scanning electron microscope images, revealed formation of crystalline phase and a successful incorporation of Cu into ZnO. The estimated average crystallite size increased from 8.64 to 12.05 nm as Cu interlayer thickness increased from 20 to 70 nm. The averaged value of the surface roughness was determined, from both the profilometer and the XRD measurements. The determinations of the optical band gap and the nature of optical transition were performed by the analysis of absorption spectrum. Also, some physical quantities, such as optical density OD and skin depth δ, were estimated. Optical absorption studies revealed that all the films have a direct allowed transition. A shift in the optical energy band gap Eg from 2.75 to 2.43 eV as a function of Cu interlayer thickness was observed. The linear refractive index (n) was analyzed to determine the metallization criterion M, the reflection loss function RL, the transmission coefficient T and the relative density Dr. Moreover, we showed that the doping of ZnO with different thickness of Cu interlayer enhances its optical activity and electrical conductivity as well, which makes it useful for photocatalytic application and sensor device fabrication in particular conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Q. Qiao, D. Xu, Y.W. Li, J.Z. Zhang, Z.G. Hu, J.H. Chu, Detection of resistive switching behavior based on the Al2O3/ZnO/Al2O3 structure with alumina buffers. Thin Solid Films 623, 8–13 (2017)

    Article  CAS  Google Scholar 

  2. N. Widiarti, J.K. Sae, S. Wahyuni, Synthesis CuO-ZnO nanocomposite and its application as an antibacterial agent. IOP Conf. Ser. 172(1), 012036 (2017)

    Article  Google Scholar 

  3. H. Zaka, S.S. Fouad, B. Parditka, A.E. Bekheet, H.E. Atyia, M. Medhat, Z. Erdélyi, Enhancement of dispersion optical parameters of Al2O3/ZnO thin films fabricated by ALD. Sol. Energy 205, 79–87 (2020)

    Article  CAS  Google Scholar 

  4. H.A. Ahmed, S.I. Abu-Eishah, A.I. Ayesh, S.T. Mahmoud, Synthesis and characterization of Cu-doped TiO2 thin films produced by the inert gas condensation technique. J. Phys: Conf. Ser. 869(1), 012027 (2017)

    Google Scholar 

  5. M.J. Alsultani, H.H. Abed, R.A. Ghazi, M.A. Mohammed, Electrical characterization of thin films (TiO2: ZnO) 1–x (GO) x/FTO heterojunction prepared by spray pyrolysis technique. J. Phys.: Conf. Ser. 1591(1), 012002 (2020)

    CAS  Google Scholar 

  6. S.S. Fouad, B. Parditka, M. Nabil, E. Baradács, S. Negm, H.E. Atyia, Z. Erdélyi, Bilayer number driven changes in polarizability and optical property in ZnO/TiO2 nanocomposite films prepared by ALD. Optik 233, 166617 (2021)

    Article  CAS  Google Scholar 

  7. H. Elshimy, T. Abdallah, The effect of mechanically milled lead iodide powder on perovskite film morphology. Appl. Phys. A 128(1), 1–14 (2022)

    Article  Google Scholar 

  8. S.M. Mali, S.S. Narwade, Y.H. Navale, S.B. Tayade, R.V. Digraskar, V.B. Patil, A.S. Kumbhar, B.R. Sathe, Heterostructural CuO–ZnO nanocomposites: a highly selective chemical and electrochemical NO2 sensor. ACS Omega 4(23), 20129–20141 (2019)

    Article  CAS  Google Scholar 

  9. E.T. Wahyuni, P.Y. Yulikayani, N.A. Aprilita, Enhancement of visible-light photocatalytic activity of Cu-doped TiO2 for photodegradation of amoxicillin in water. J. Mater. Environ. Sci. 11(4), 670–683 (2020)

    CAS  Google Scholar 

  10. H. Elshimy, T. Abdallah, S.A. Abou, Optimization of spin coated TiO2 layer for hole-free perovskite solar cell. IOP Conf. Ser. 762(1), 012003 (2020)

    Article  CAS  Google Scholar 

  11. Z. Xu, G. Duan, Y. Li, G. Liu, H. Zhang, Z. Dai, W. Cai, CuO–ZnO micro/nanoporous array-film-based chemosensors: new sensing properties to H2S. Chemistry 20(20), 6040–6046 (2014)

    Article  CAS  Google Scholar 

  12. Q. Xu, D. Ju, Z. Zhang, S. Yuan, J. Zhang, H. Xu, B. Cao, Near room-temperature triethylamine sensor constructed with CuO/ZnO PN heterostructural nanorods directly on flat electrode. Sens. Actuators B Chem. 225, 16–23 (2016)

    Article  CAS  Google Scholar 

  13. W. Maziarz, TiO2/SnO2 and TiO2/CuO thin film nano-heterostructures as gas sensors. Appl. Surf. Sci. 480, 361–370 (2019)

    Article  CAS  Google Scholar 

  14. A. Shanmugasundaram, D.S. Kim, T.F. Hou, D.W. Lee, Facile in situ formation of CuO/ZnO pn heterojunction for improved H2S-sensing applications. J. Sens. Sci. Technol. 29(3), 156–161 (2020)

    Google Scholar 

  15. P. Zaumseil, High-resolution characterization of the forbidden Si 200 and Si 222 reflections. J. Appl. Crystallogr. 48(2), 528–532 (2015)

    Article  CAS  Google Scholar 

  16. M. Sajjad, I. Ullah, M.I. Khan, J. Khan, M.Y. Khan, M.T. Qureshi, Structural and optical properties of pure and copper doped zinc oxide nanoparticles. Results Phys. 9, 1301–1309 (2018)

    Article  Google Scholar 

  17. M.I. Ionescu, F. Bensebaa, B.L. Luan, Study of optical and electrical properties of ZnO/Cu/ZnO multilayers deposited on flexible substrate. Thin Solid Films 525, 162–166 (2012)

    Article  CAS  Google Scholar 

  18. H.S. Das, G. Roymahapatra, P. Kumar, R. Das, Study the effect of ZnO/Cu/ZnO multilayer structure by RF magnetron sputtering for flexible display applications. ES Energy Environ. 13, 50–56 (2021)

    CAS  Google Scholar 

  19. T. Wang, H.P. Ma, J.G. Yang, J.T. Zhu, H. Zhang, J. Feng, S.J. Ding, H.L. Lu, D.W. Zhang, Investigation of the optical and electrical properties of ZnO/Cu/ZnO multilayers grown by atomic layer deposition. J. Alloys Compd. 744, 381–385 (2018)

    Article  CAS  Google Scholar 

  20. Y. Chen, Q. Tao, W. Fu, H. Yang, Synthesis of PbS/Ni2+ doped CdS quantum dots cosensitized solar cells: enhanced power conversion efficiency and durability. Electrochim. Acta 173, 812–818 (2015)

    Article  CAS  Google Scholar 

  21. E.G. El-Metwally, E.M. Assim, S.S. Fouad, Optical characteristics and dispersion parameters of thermally evaporated Ge50In4Ga13Se33 chalcogenide thin films. Opt. Laser Technol. 131, 106462 (2020)

    Article  CAS  Google Scholar 

  22. S.S. Fouad, B. Parditka, A.E. Bekheet, H.E. Atyia, Z. Erdélyi, ALD of TiO2/ZnO mutilayers towards the understanding of optical properties and polarizability. Opt. Laser Technol. 140, 107035 (2021)

    Article  CAS  Google Scholar 

  23. R.J. Álvaro, N.D. Diana, A.M. María, Effect of Cu on optical properties of TiO2 nanoparticles. Contemp. Eng. Sci. 10, 1539–1549 (2017)

    Article  Google Scholar 

  24. M. Nabil, S.A. Mohamed, K. Easawi, S.S. Obayya, S. Negm, H. Talaat, M.K. El-Mansy, Surface modification of CdSe nanocrystals: application to polymer solar cell. Curr. Appl. Phys. 20(3), 470–476 (2020)

    Article  Google Scholar 

  25. H. Zaka, B. Parditka, Z. Erdélyi, H.E. Atyia, P. Sharma, S.S. Fouad, Investigation of dispersion parameters, dielectric properties and opto–electrical parameters of ZnO thin film grown by ALD. Optik 203, 163933 (2020)

    Article  CAS  Google Scholar 

  26. I.M. El Radaf, S.S. Fouad, A.M. Ismail, G.B. Sakr, Influence of Spray time on the optical and electrical properties of CoNi2S4 thin films. Mater. Res. Express 5(4), 046406 (2018)

    Article  Google Scholar 

  27. M. Caglar, S. Ilican, Y. Caglar, Influence of dopant concentration on the optical properties of ZnO: in films by sol–gel method. Thin Solid Films 517(17), 5023–5028 (2009)

    Article  CAS  Google Scholar 

  28. J.A. Duffy, "Trends in energy gaps of binary compounds: an approach based upon electron transfer parameters from optical spectroscopy. J. Phys. C 13(16), 2979 (1980)

    Article  CAS  Google Scholar 

  29. V.P. Guptal, N.M. Ravindra, Phys. Stat. Sol. (B) 100, 715 (1980)

    Article  Google Scholar 

  30. S.K. O’Leary, S.R. Johnson, P.K. Lim, The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: an empirical analysis. J. Appl. Phys. 82(7), 3334–3340 (1997)

    Article  Google Scholar 

  31. S.S. Fouad, I.M. El Radaf, P. Sharma, M.S. El-Bana, Multifunctional CZTS thin films: structural, optoelectrical, electrical and photovoltaic properties. J. Alloys Compd. 757, 124–133 (2018)

    Article  CAS  Google Scholar 

  32. M. Nabil, F. Horia, S.S. Fouad, S. Negm, Impact of Au nanoparticles on the thermophysical parameters of Fe3O4 nanoparticles for seawater desalination. Opt. Materiales 128, 112456 (2022)

    Article  CAS  Google Scholar 

  33. M. Ohyama, H. Kouzuka, T. Yoko, Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution. Thin Solid Films 306(1), 78–85 (1997)

    Article  CAS  Google Scholar 

  34. G. Helmy, Electrical and optical properties of Sb2O3 B2O3 Bi2O3 TeO2 glass system. Egypt. J. Phys. 47(1), 23–29 (2019)

    Google Scholar 

  35. I.M. El Radaf, H.Y.S. Al-Zahrani, S.S. Fouad, M.S. El-Bana, Profound optical analysis for novel amorphous Cu2FeSnS4 thin films as an absorber layer for thin film solar cells. Ceram. Int. 46(11), 18778–21878 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The samples used in this study were prepared, and films morphology and uniformity were measured at the University of Debrecen, Hungary, according to the agreement between Faculty of Education, Ain Shams University “Coordinator and Supervisor Prof. Dr. Suzan Fouad” and Faculty of Science and Technology, University of Debrecen “Coordinator and Supervisor Prof. Dr. Zoltán Erdélyi”. The opto-electrical parameters were measured at Laser Physics and Nanotechnology Unit (LPTU), Faculty of Engineering, Shoubra, Benha University. Project no. TKP2021-NKTA-34 has been implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the TKP2021-NKTA funding scheme.

Author information

Authors and Affiliations

Authors

Contributions

The submission of the manuscript has been approved by all coauthors. SSF contributed to the idea and the writing and the revision. EB and BP prepared samples. MN measured and calculated the different parameters and revision. SN involved in revision. ZE involved in revision.

Corresponding author

Correspondence to M. Nabil.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fouad, S.S., Parditka, B., Nabil, M. et al. Effect of Cu interlayer on opto-electrical parameters of ZnO thin films. J Mater Sci: Mater Electron 33, 20594–20603 (2022). https://doi.org/10.1007/s10854-022-08871-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08871-w

Navigation