Skip to main content
Log in

Enhancement in photovoltaic performance of CZTS Thin-film solar cells through varying stacking order and sulfurization time

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The CZTS samples were produced by a two-stage method, which includes deposition of Cu, Sn, Zn, and ZnS layers using magnetron sputtering to obtain CuSn/Zn/Cu and CuSn/ZnS/Cu stacks. The latter stage involves the sulfurization process of stacked films at 550 °C for varied sulfurization time (60, 90, 120, and 150 s) employing Rapid Thermal Processing (RTP) method to attain CZTS structure. The prepared CZTS thin films were analyzed utilizing several characterization methods. The energy-dispersive X-ray spectroscopy (EDX) measurements revealed that all sulfurized samples had Cu-poor and Zn-rich chemical composition. All samples showed that diffraction peaks belonged to pure kesterite CZTS phase subject to their XRD patterns. Besides, it was observed that the sulfurization time had a crucial effect on the crystal size of the samples. The Raman spectra of the samples verified the constitution of kesterite CZTS phase and it provides detection of some CTS-based secondary phases. The scanning electron microscopy (SEM) image of the films revealed that polycrystalline surface structures were observable in all the samples. However, plate-like surface features were observed in some samples that may refer to CTS-based secondary phases depending on chemical composition. From 1.40 to 1.48 eV optical band gap values were obtained from (αhν)2 vs. photon energy () plots. The Van der Pauw measurements exhibited that the CZTS samples produced employing CuSn/ZnS/Cu stack had lower resistivity (~ 10–3 Ω cm), higher carrier concentration values (~ 1021 cm−3), and higher charge mobility. The solar cells prepared using the most promising CZTS samples employing CuSn/Zn/Cu and CuSn/ZnS/Cu precursor films revealed 1.95% and 3.10% conversion efficiencies, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, H. Sugimoto, IEEE J. Photovolt. 9, 1863–1867 (2019)

    Article  Google Scholar 

  2. M. Green, E. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao, Prog. Photovolt. Res. Appl. 29, 3–15 (2021)

    Article  Google Scholar 

  3. H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, Sol. Energy Mater. Sol. Cells 49, 407–414 (1997)

    Article  CAS  Google Scholar 

  4. H. Katagiri, N. Ishigaki, T. Ishida, K. Saito, Jpn. J. Appl. Phys. 40, 500–504 (2001)

    Article  CAS  Google Scholar 

  5. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Adv. Energy Mater. 4, 1301465 (2014)

    Article  CAS  Google Scholar 

  6. W. Shockley, H.J. Queisser, J. Appl. Phys. 32, 510–519 (1961)

    Article  CAS  Google Scholar 

  7. M.A. Olgar, A. Altuntepe, S. Erkan, R. Zan, J. Mol. Struct. 1230, 129922 (2021)

    Article  CAS  Google Scholar 

  8. O. Vigil-Galán, M. Espíndola-Rodríguez, M. Courel, X. Fontané, D. Sylla, V. Izquierdo-Roca, A. Fairbrother, E. Saucedo, A. Pérez-Rodríguez, Sol. Energy Mater. Sol. Cells 117, 246–250 (2013)

    Article  CAS  Google Scholar 

  9. N. Thota, M. Gurubhaskar, M.A. Sunil, P. Prathap, Y.V. Subbaiah, A. Tiwari, Appl. Surf. Sci. 396, 644–651 (2017)

    Article  CAS  Google Scholar 

  10. H. Araki, A. Mikaduki, Y. Kubo, T. Sato, K. Jimbo, W.S. Maw, H. Katagiri, M. Yamazaki, K. Oishi, A. Takeuchi, Thin Solid Films 517, 1457–1460 (2008)

    Article  CAS  Google Scholar 

  11. H. Yoo, J. Kim, Thin Solid Films 518, 6567–6572 (2010)

    Article  CAS  Google Scholar 

  12. S.W. Shin, S.M. Pawar, C.Y. Park, J.H. Yun, J.H. Moon, J.H. Kim, J.Y. Lee, Sol. Energy Mater. Sol. Cells 95, 3202–3206 (2011)

    Article  CAS  Google Scholar 

  13. K. Maeda, K. Tanaka, Y. Fukui, H. Uchiki, Jpn J. Appl. Phys. 50, 01BE10 (2011)

    Article  Google Scholar 

  14. H. Yoo, J.H. Kim, L.X. Zhang, Curr. Appl. Phys. 12, 1052–1057 (2012)

    Article  Google Scholar 

  15. H. Guan, H.L. Shen, C. Gao, X.C. He, J. Mater. Sci.: Mater. Electron. 24, 2667–2671 (2013)

    CAS  Google Scholar 

  16. N. Akcay, T. Ataser, Y. Ozen, S. Ozcelik, Thin Solid Films 704, 138028 (2020)

    Article  CAS  Google Scholar 

  17. J. Ge, Y.H. Wu, C.J. Zhang, S.H. Zuo, J.C. Jiang, J.H. Ma, P.X. Yang, J.H. Chu, Appl. Surf. Sci. 258, 7250–7254 (2012)

    Article  CAS  Google Scholar 

  18. G. Sai Gautam, T.P. Senftle, E.A. Carter, Chem. Mater. 30, 4543–4555 (2018)

    Article  CAS  Google Scholar 

  19. C.A. Ava, Y.S. Ocak, S. Asubay, O. Celik, Opt. Mater. 121, 111565 (2021)

    Article  CAS  Google Scholar 

  20. Z. Su, W. Li, G. Asim, T.Y. Fan, L.H. Wong, Cation substitution of CZTS solar cell with> 10% efficiency, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), IEEE, 2016, pp. 0534–0538

  21. T. Sanchez, E. Regalado-Pérez, X. Mathew, M. Sanchez, Y. Sanchez, E. Saucedo, N. Mathews, Sol. Energy Mater. Sol. Cells 198, 44–52 (2019)

    Article  CAS  Google Scholar 

  22. T. Taskesen, D. Pareek, D. Hauschild, A. Haertel, L. Weinhardt, W. Yang, T. Pfeiffelmann, D. Nowak, C. Heske, L. Gütay, Rsc Adv. 11, 12687–12695 (2021)

    Article  CAS  Google Scholar 

  23. X. Liu, J. Guo, R. Hao, Q. Zhao, F. Chang, L. Wang, B. Liu, Y. Li, K. Gu, Sol. Energy 183, 285–292 (2019)

    Article  CAS  Google Scholar 

  24. A. Aldalbahi, E. Mkawi, K. Ibrahim, M. Farrukh, Sci. Rep. 6, 1–9 (2016)

    Article  CAS  Google Scholar 

  25. C. Kim, S. Hong, Mol. Cryst. Liq. Cryst. 617, 179–185 (2015)

    Article  CAS  Google Scholar 

  26. X. Xu, S.R. Wang, X. Ma, S. Yang, Y.B. Li, Z. Tang, J. Mater. Sci.: Mater. Electron. 29, 19137–19146 (2018)

    CAS  Google Scholar 

  27. M.P. Suryawanshi, S.W. Shin, U.V. Ghorpade, K.V. Gurav, C.W. Hong, P.S. Patil, A.V. Moholkar, J.H. Kim, J. Alloy Compd. 671, 509–516 (2016)

    Article  CAS  Google Scholar 

  28. P.K. Kannan, S. Chaudhari, S.R. Dey, Thin Solid Films 649, 81–88 (2018)

    Article  CAS  Google Scholar 

  29. V. Piacente, S. Foglia, P. Scardala, J Alloy Compd 177, 17–30 (1991)

    Article  CAS  Google Scholar 

  30. A. Fairbrother, L. Fourdrinier, X. Fontane, V. Izquierdo-Roca, M. Dimitrievska, A. Perez-Rodriguez, E. Saucedo, J. Phys. Chem. C 118, 17291–17298 (2014)

    Article  CAS  Google Scholar 

  31. B. Vermang, Y. Ren, O. Donzel-Gargand, C. Frisk, J. Joel, P. Salome, J. Borme, S. Sadewasser, C. Platzer-Björkman, M. Edoff, IEEE J. Photovolt. 6, 332–336 (2015)

    Article  Google Scholar 

  32. P. Prabeesh, V. Sajeesh, I.P. Selvam, M.D. Bharati, G.M. Rao, S. Potty, Sol. Energy 207, 419–427 (2020)

    Article  CAS  Google Scholar 

  33. M. Olgar, A. Sarp, A. Seyhan, R. Zan, Renew. Energy 179, 1865–1874 (2021)

    Article  CAS  Google Scholar 

  34. S. Chen, A. Walsh, X.G. Gong, S.H. Wei, Adv. Mater. 25, 1522–1539 (2013)

    Article  CAS  Google Scholar 

  35. F. Hergert, R. Hock, Thin Solid Films 515, 5953–5956 (2007)

    Article  CAS  Google Scholar 

  36. M. Dimitrievska, A. Fairbrother, X. Fontane, T. Jawhari, V. Izquierdo-Roca, E. Saucedo, A. Perez-Rodriguez, Appl. Phys. Lett. 104, 021901 (2014)

    Article  CAS  Google Scholar 

  37. M.A. Olgar, Superlattice Microstruct. 138, 106366 (2020)

    Article  CAS  Google Scholar 

  38. P.A. Fernandes, P.M.P. Salome, A.F. da Cunha, J. Alloy Compd. 509, 7600–7606 (2011)

    Article  CAS  Google Scholar 

  39. Y.C. Dong, J. He, X.R. Li, Y. Chen, L. Sun, P.X. Yang, J.H. Chu, J. Alloy Compd. 665, 69–75 (2016)

    Article  CAS  Google Scholar 

  40. T. Raadik, M. Grossberg, J. Krustok, M. Kauk-Kuusik, A. Crovetto, R.B. Ettlinger, O. Hansen, J. Schou, Appl. Phys. Lett. 110, 261105 (2017)

    Article  CAS  Google Scholar 

  41. Y. Zhao, X.X. Han, B. Xu, C. Dong, J.S. Li, X.B. Yan, J. Mater. Sci.: Mater. Electron. 30, 17947–17955 (2019)

    CAS  Google Scholar 

  42. J.J. Scragg, T. Kubart, J.T. Watjen, T. Ericson, M.K. Linnarsson, C. Platzer-Bjorkman, Chem. Mater. 25, 3162–3171 (2013)

    Article  CAS  Google Scholar 

  43. A. Redinger, D.M. Berg, P.J. Dale, S. Siebentritt, J. Am. Chem. Soc. 133, 3320–3323 (2011)

    Article  CAS  Google Scholar 

  44. J. Tauc, Mater. Res. Bull. 3, 37–46 (1968)

    Article  CAS  Google Scholar 

  45. R. Deokate, R. Kate, S. Bulakhe, J. Mater. Sci.: Mater. Electron. 30, 3530–3538 (2019)

    CAS  Google Scholar 

  46. C. Malerba, F. Biccari, C.L.A. Ricardo, M. Valentini, R. Chierchia, M. Muller, A. Santoni, E. Esposito, P. Mangiapane, P. Scardi, A. Mittiga, J. Alloy Compd. 582, 528–534 (2014)

    Article  CAS  Google Scholar 

  47. A.V. Moholkar, S.S. Shinde, G.L. Agawane, S.H. Jo, K.Y. Rajpure, P.S. Patil, C.H. Bhosale, J.H. Kim, J. Alloy Compd. 544, 145–151 (2012)

    Article  CAS  Google Scholar 

  48. M.A. Olgar, J. Klaer, R. Mainz, L. Ozyuzer, T. Unold, Thin Solid Films 628, 1–6 (2017)

    Article  CAS  Google Scholar 

  49. A. Tang, Z. Li, F. Wang, M. Dou, W. Mao, J. Mater. Sci.: Mater. Electron. 29, 7613–7620 (2018)

    CAS  Google Scholar 

  50. S. Zhou, R. Tan, X. Jiang, X. Shen, W. Xu, W. Song, J. Mater. Sci.: Mater. Electron. 24, 4958–4963 (2013)

    CAS  Google Scholar 

  51. H. Bencherif, Sol. Energy 238, 114–125 (2022)

    Article  CAS  Google Scholar 

  52. Z. Zhi, S. Wang, L. Huang, J. Li, X. Xiao, Mater. Sci. Semicond. Process. 144, 106592 (2022)

    Article  CAS  Google Scholar 

  53. S. Siebentritt, Thin Solid Films 535, 1–4 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work partially supported by The Scientific and Technological Research Council of Turkey (TUBITAK) with Project Number 118F530. M.A. Olgar gratefully acknowledge the help of M. Tomakin for electrical characterization, and S. Erkan and A. Yagmyrov for sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Olgar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olgar, M.A. Enhancement in photovoltaic performance of CZTS Thin-film solar cells through varying stacking order and sulfurization time. J Mater Sci: Mater Electron 33, 20121–20133 (2022). https://doi.org/10.1007/s10854-022-08829-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08829-y

Navigation