Skip to main content
Log in

Characteristics of an artificial graphite anode material for rapid charging: manufactured with different coke particle sizes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An artificial graphite anode material (10–15 μm) is produced using coke at two sizes (10–15 μm, 2–5 μm) and the electrochemical properties are compared and discussed. We produce and measure an artificial graphite anode material using coke with a particle size of 10–15 μm, limited lithium ion insertion–desorption pathways, increased migration pathways, and low-speed charge–discharge characteristics. When a block is manufactured using coke at a particle size of 2–5 μm and an anode material is created with a particle size of 10–15 μm, voids capable of storing lithium ions between the coke particles form inside the anode material. These spaces are utilized and the capacity was measured. In addition, the lithium ion insertion-deintercalation path and lithium ion diffusion distance are controlled and the high-speed discharge properties were measured (78.3%) at low temperatures (5C/0.1C, − 10 °C). At the same time, the high specific surface area due to the small size of the coke was controlled by the binder pitch used in the block, leading to excellent initial efficiency performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J.F. Peters, M. Baumann, B. Zimmermann, J. Braun, M. Weil, The environmental impact of Li-Ion batteries and the role of key parameters—A review. Renew. Sustain. Energy Rev. 67, 491–506 (2017)

    Article  CAS  Google Scholar 

  2. D.H. Doughty, P.C. Butler, A.A. Akhil, N.H. Clark, J.D. Boyes, Batteries for large-scale stationary electrical energy storage. Electrochem. Soc. Interf. 2010, 49–53 (2010)

    Article  Google Scholar 

  3. S. Goriparti, E. Miele, F.D. Angelis, E.D. Fabrizi, R.P. Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421–443 (2014)

    Article  CAS  Google Scholar 

  4. L. Zou, F. Kang, X. Li, Y.P. Zheng, W. Shen, J. Zhang, Investigations on the modified natural graphite as anode materials in lithium ion battery. J. Phys. Chem. Solids 69(5–6), 1265–1271 (2008)

    Article  CAS  Google Scholar 

  5. M. Yoshio, H. Wang, K. Fukuda, T. Umeno, T. Abe, Z. Ogumi, Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere. J. Mater. Chem. 14(11), 1754–1758 (2004)

    Article  CAS  Google Scholar 

  6. N. Ohta, K. Nagaoka, K. Hoshi, S. Bitoh, M. Inagaki, Carbon-coated graphite for anode of lithium ion rechargeable batteries: graphite substrates for carbon coating. J. Power Sources 194(2), 985–990 (2009)

    Article  CAS  Google Scholar 

  7. H.Y. Lee, J.K. Baek, S.W. Jang, S.M. Lee, S.T. Hong, K.Y. Lee, M.H. Kim, Characteristics of carbon-coated graphite prepared from mixture of graphite and polyvinylchloride as anode materials for lithium ion batteries. J. Power Sources 101(2), 206–212 (2001)

    Article  CAS  Google Scholar 

  8. Y.S. Ding, W.N. Li, S. Iaconetti, X.F. Shen, J. DiCarlo, F.S. Galasso, S.L. Suib, Characteristics of graphite anode modified by CVD carbon coating. Surf. Coat. Technol. 200(9), 3041–3048 (2006)

    Article  CAS  Google Scholar 

  9. H. Shi, J. Barker, M.Y. Saidi, R. Koksbang, Structure and lithium intercalation properties of synthetic and natural graphite. J. Electrochem. Soc. 143(11), 3466 (1996)

    Article  CAS  Google Scholar 

  10. C. Wang, H. Zhao, J. Wang, J. Wang, P. Lv, Electrochemical performance of modified artificial graphite as anode material for lithium ion batteries. Ionics 19(2), 221–226 (2013)

    Article  CAS  Google Scholar 

  11. B. Xing, C. Zhang, Y. Cao, G. Huang, Q. Liu, C. Zhang, Z. Chen, G. Yi, L. Chen, J. Yu, Preparation of synthetic graphite from bituminous coal as anode materials for high performance lithium-ion batteries. Fuel Process Technol. 172, 162–171 (2018)

    Article  CAS  Google Scholar 

  12. J.H. Cho, B.C. Bai, Effects of pressurized PFO-based pitch coking conditions on coke yield and graphite conductivity. Carbon Lett. 31(5), 921–927 (2021)

    Article  Google Scholar 

  13. S.E. Lee, J.H. Kim, Y.S. Lee, B.C. Bai, J.S. Im, Effect of crystallinity and particle size on coke-based anode for lithium ion batteries. Carbon Lett. 31(5), 911–920 (2021)

    Article  Google Scholar 

  14. S. Dong, P. Alvarez, N. Paterson, D.R. Dugwell, R. Kandiyoti, Study on the effect of heat treatment and gasification on the carbon structure of coal chars and metallurgical cokes using fourier transform Raman spectroscopy. Energy Fuels 23(3), 1651–1661 (2009)

    Article  CAS  Google Scholar 

  15. Q. Cheng, R. Yuge, K. Nakahara, N. Tamura, S. Miyamoto, KOH etched graphite for fast chargeable lithium-ion batteries. J. Power Sources 284, 258–263 (2015)

    Article  CAS  Google Scholar 

  16. Q. Cheng, Y. Okamoto, N. Tamura, M. Tsuji, S. Maruyama, Y. Matsuo, Graphene-like-graphite as fast-chargeable and high-capacity anode materials for lithium ion batteries. Sci. Rep. 7(1), 1–14 (2017)

    Article  Google Scholar 

  17. K. Zaghib, F. Brochu, A. Guerfi, K. Kinoshita, Effect of particle size on lithium intercalation rates in natural graphite. J. Power Sources 103(1), 140–146 (2001)

    Article  CAS  Google Scholar 

  18. S.R. Sivakkumar, J.Y. Nerkar, A.G. Pandolfo, Rate capability of graphite materials as negative electrodes in lithium-ion capacitors. Electrochim. Acta 55(9), 3330–3335 (2010)

    Article  CAS  Google Scholar 

  19. J.H. Cho, J.S. Im, B.C. Bai, Effect of particle orientation and porosity on thermal conductivity of petroleum pitch polymer-based carbon molded body. Appl. Sci. 10(20), 7281 (2020)

    Article  CAS  Google Scholar 

  20. M.I. Kim, J.H. Cho, B.C. Bai, J.S. Im, The control of volume expansion and porosity in carbon block by carbon black (CB) addition for increasing thermal conductivity. Appl. Sci. 10(17), 6068 (2020)

    Article  CAS  Google Scholar 

  21. A. Hussein, Y. Lu, R. Mollaabbasi, J. Tessier, H. Alamdari, Bio-pitch as a binder in carbon anodes for aluminum production: bio-pitch properties and its interaction with coke particles. Fuel 275, 117875 (2020)

    Article  CAS  Google Scholar 

  22. M. Mundszinger, M. Rapp, U. Golla-Schindler, M. Wachtler, U. Kaiser, FIB-tomography of graphite anode particles for lithium ion batteries, in European microscopy congress 2016: proceedings. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2016), pp.854–855

    Chapter  Google Scholar 

  23. C. Lee, Y.J. Han, Y.D. Seo, K. Nakabayashi, J. Miyawaki, R. Santamaria, J. Jang, C4F8 plasma treatment as an effective route for improving rate performance of natural/synthetic graphite anodes in lithium ion batteries. Carbon 103, 28–35 (2016)

    Article  CAS  Google Scholar 

  24. Y.J. Han, J.U. Hwang, K.S. Kim, J.H. Kim, J.D. Lee, J.S. Im, Optimization of the preparation conditions for pitch based anode to enhance the electrochemical properties of LIBs. J. Ind. Eng. Chem. 73, 241–247 (2019)

    Article  CAS  Google Scholar 

  25. F.C. Tai, C. Wei, S.H. Chang, W.S. Chen, Raman and X-ray diffraction analysis on unburned carbon powder refined from fly ash. J. Raman Spectrosc. 41(9), 933–937 (2010)

    Article  CAS  Google Scholar 

  26. R.I.R. Blyth, H. Buqa, F.P. Netzer, M.G. Ramsey, J.O. Besenhard, P. Golob, M. Winter, XPS studies of graphite electrode materials for lithium ion batteries. Appl. Surf. Sci. 167(1–2), 99–106 (2000)

    Article  CAS  Google Scholar 

  27. D.L. Vu, Y.J. Kwon, S.C. Lee, J.U. Lee, J.W. Lee, Exfoliated graphene nanosheets as high-power anodes for lithium-ion batteries. Carbon Lett. 29(1), 81–87 (2019)

    Article  Google Scholar 

  28. J.U. Hwang, J.D. Lee, Electrochemical characteristics of PFO pitch anode prepared by chemical activation for lithium ion battery. Korea Chem. Eng. Res. 55(3), 307–312 (2017)

    CAS  Google Scholar 

  29. B.H. Kim, J.H. Kim, J.G. Kim, M.J. Bae, J.S. Im, C.W. Lee, S. Kim, Electrochemical and structural properties of lithium battery anode materials by using a molecular weight controlled pitch derived from petroleum residue. J. Ind. Eng. Chem. 41, 1–9 (2016)

    Article  CAS  Google Scholar 

  30. J. Xu, X. Wang, N. Yuan, B. Hu, J. Ding, S. Ge, Graphite-based lithium ion battery with ultrafast charging and discharging and excellent low temperature performance. J. Power Sources 430, 74–79 (2019)

    Article  CAS  Google Scholar 

  31. K. Dai, Z. Wang, G. Ai, H. Zhao, W. Yuan, X. Song, G. Liu, The transformation of graphite electrode materials in lithium-ion batteries after cycling. J. Power Sources 298, 349–354 (2015)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Korea Evaluation Institute of Industrial Technology (KEIT) through the Carbon Cluster Construction project [10083621, Development of Preparation Technology in Petroleum-Based Artificial Graphite Anode] funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by JUH, JHJ, JDL, and JSI. The first draft of the manuscript was written by JUH and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jong Dae Lee or Ji Sun Im.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, J.U., Cho, J.H., Lee, J.D. et al. Characteristics of an artificial graphite anode material for rapid charging: manufactured with different coke particle sizes. J Mater Sci: Mater Electron 33, 20095–20105 (2022). https://doi.org/10.1007/s10854-022-08826-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08826-1

Navigation