Skip to main content
Log in

Impacts of the colemanite on the enhancement of the radiation shielding capacity of polypropylene

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Colemanite–polypropylene polymeric material has been fabricated by doping Colemanite material with different ratios 5, 15, 25, and 35 wt% on the polypropylene polymeric material. The produced samples were coded as PC1, PC2, PC3, and PC4, respectively. The phenomenon ionizing radiation shielding capacity of the fabricated material has been examined. The fabricated polymers' density measurement showed that the density increased between 1.06 and 1.59 g/cm3. The Monte Carlo simulation was used to evaluate effective shielding parameters. The linear attenuation coefficient of the prepared materials increased with the increase in Colemanite content wt%. Opposite to the linear attenuation coefficient, the half-value layer (HVL) is found to follow the order (PC1)HVL < (PC2)HVL < (PC3)HVL < (PC4)HVL. The radiation protection efficiency (RPE) for all fabricated polymers varied around 100% at gamma-ray photons with an energy of 15 keV. These values were reduced by raising the photon energy to 9.209%, 10.465%, 12.220%, and 13.893% for PC1, PC2, PC3, and PC4, respectively. The RPE shows an increase with the rise in fabricated polymer thickness and the Colemanite ratio in the fabricated polymer. Increasing the colemanite concentration in the fabricated polymer samples causes an observable decrease in both the exposure and energy absorption buildup factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data underlying this article are available in the article. The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. U.S.NRC, U.S.NRC (2017).

  2. B. Aygün, T. Korkut, A. Karabulut, O. Gencel, A. Karabulut, Int. J. Polym. Anal. Ch. 20, 323–329 (2015)

    Article  Google Scholar 

  3. B. Aygün, G. Budak, Nucl. Sci. Technol. 2012, 33–39 (2012)

    Google Scholar 

  4. C.V. More, Z. Alsayed, M.S. Badawi, A.A. Thabet, P.P. Pawar, Environ. Chem. Lett. 19(3), 2057–2090 (2021)

    Article  CAS  Google Scholar 

  5. G. Hu, G. Shi, H. Hu, Q. Yang, B. Yu, W. Sun, Nucl. Eng. Technol. 52(10), 2387–2393 (2020)

    Article  CAS  Google Scholar 

  6. Z. Uddin, T. Yasin, M. Shafiq, A. Raza, A. Zahur, Radiat. Phys. Chem. 166, 108450 (2020)

    Article  CAS  Google Scholar 

  7. B. Aygün, E. Şakar, V.P. Singh, M.I. Sayyed, T. Korkut, A. Karabulut, Prog. Nucl. Energy 130, 103538 (2020)

    Article  Google Scholar 

  8. B. Aygün, B. Alaylar, K. Turhan, E. Şakar, M. Karadayı, M.I. Sayyed, E. Pelit, M. Güllüce, A. Karabulut, Z. Turgut, B. Alım, Int. J. Radiat. Biol. 96(11), 1423–1434 (2020)

    Article  Google Scholar 

  9. B. Aygün, E. Şakar, A. Karabulut, B. Alım, M.I. Sayyed, V.P. Singh, N.Y. Yorgun, Ö.F. Özpolat, Radiochim. Acta 109(2), 143–151 (2020)

    Article  Google Scholar 

  10. B. Aygün, E. Şakar, E. Cinan, N.Y. Yorgun, M.I. Sayyed, O. Agar, A. Karabulut, Radiat. Phys. Chem. 174, 108897 (2020)

    Article  Google Scholar 

  11. J. Kaewkhao, T. Korkut, H. Korkut, B. Aygün, P. Yasaka, S. Tuscharoen, S. Insiripong, A. Karabulut, Glass Phys. Chem. 43(6), 560–563 (2017)

    Article  CAS  Google Scholar 

  12. M.I. Sayyed, A. Kumar, H.O. Tekin, R. Kaur, M. Singh, O. Agar, M.U. Khandaker, Prog. Nucl. Energy 118, 103118 (2020)

    Article  CAS  Google Scholar 

  13. B. Aygün, Nucl. Eng. Technol. 52(3), 647–653 (2020)

    Article  Google Scholar 

  14. S. Roy, B. Silwal, A. Nycz, M. Noakes, E. Cakmak, P. Nandwana, Y. Yamamoto, Add. Manufact. 38, 101821 (2021)

    CAS  Google Scholar 

  15. S.O. Araz, H. Gumus, S.U. Bayca, A. Aydin, Appl. Radiat. Isotop. 170, 109605 (2021)

    Article  CAS  Google Scholar 

  16. N. Ekinci, E. Kavaz, B. Aygün, U. Perişanoğlu, Radiat. Effects Defects Solids 174, 435–451 (2019)

    Article  CAS  Google Scholar 

  17. T. Korkut, B. Aygün, Ö. Bayram, A. Karabulut, J. Radioanal. Nucl. Chem. 306(1), 119–122 (2015)

    Article  CAS  Google Scholar 

  18. Y.S. Rammah, K.A. Mahmoud, F.Q. Mohammed, M.I. Sayyed, O.L. Tashlykov, R. El-Mallawany, Nucl. Eng. Technol. 53(8), 2661–2668 (2021)

    Article  CAS  Google Scholar 

  19. M. Gahleitner, C. Paulik, Brydson’s Plastics Materials, 8th edn. (Elsevier, Amsterdam, 2017)

    Google Scholar 

  20. S.S. Barala, V. Manda, A.S. Jodha, L.R. Meghwal, C. Ajay, D. Gopalani, J. Appl. Polym. Sci. 138(18), 50334 (2021)

    Article  CAS  Google Scholar 

  21. J. Fan, J. Wu, Y. Ma, Int. J. Mod. Phys. B 34(07), 2050046 (2020)

    Article  CAS  Google Scholar 

  22. C.V. More, H. Alavian, P.P. Pawar, J. Non-Cryst, J. Non-Cryst. Solids 546, 120277 (2020)

    Article  CAS  Google Scholar 

  23. T. Bel, C. Arslan, N. Baydogan, Mater. Chem. Phys. 221, 58–67 (2019)

    Article  CAS  Google Scholar 

  24. O. Gencel, W. Brostow, G. Martinez-Barrera, M.S. Gok, Polimery/Polymers 57, 276–283 (2012)

    CAS  Google Scholar 

  25. I. Demir, M. Gümüş, H.S. Gökçe, Constr. Build. Mater. 257, 119596 (2020)

    Article  CAS  Google Scholar 

  26. V.A. Kamat, K. Swaroop, K.U. Kiran, B. George, H.M. Somashekarappa, Radiat. Phys. Chem. 156, 50–57 (2019)

    Article  CAS  Google Scholar 

  27. R.M. El-Sharkawy, E.A. Allam, A. El-Taher, E.R. Shaaban, M.E. Mahmoud, Int. J. Energy Res. 45(6), 8942–8959 (2021)

    Article  CAS  Google Scholar 

  28. İ Bilici, B. Aygün, C.U. Deniz, B. Öz, M.I. Sayyed, A. Karabulut, Prog. Nucl. Energy 141, 103954 (2021)

    Article  CAS  Google Scholar 

  29. K.M. Kaky, M.I. Sayyed, M.H.A. Mhareb, A.H. Abdalsalam, K.A. Mahmoud, S.O. Baki, M.A. Mahdi, J. Non-Cryst. Solids 545, 120250 (2020)

    Article  CAS  Google Scholar 

  30. S. Islam, K.A. Mahmoud, M.I. Sayyed, B. Alim, M. Rahman, A.S. Mollah, Radiat. Phys. Chem. 172, 108559 (2019)

    Article  Google Scholar 

  31. M.S.I. Koubisy, Kh.S. Shaaban, E.A.A. Wahab, M.I. Sayyed, K.A. Mahmoud, Eur. Phys. J. Plus 136, 156 (2021)

    Article  CAS  Google Scholar 

  32. O.L. Tashlykov, S.G. Vlasova, I.S. Kovyazina, K.A. Mahmoud, Eur. Phys. J. Plus 136, 428 (2021)

    Article  CAS  Google Scholar 

  33. K. A. Mahmoud, M. I. Sayyed, A. M. S. Alhuthali, and M. Y. Hanfi, Boletín de La Sociedad Española de Cerámica y Vidrio (2020).

  34. N.A.M. Alsaif, M. Alotiby, M.Y. Hanfi, K.A. Mahmoud, H.A. Al-Yousef, B.M. Alotaibi, M.I. Sayyed, Y. Al-Hadeethi, J. Aust. Ceram. Soc. 57, 1267 (2021)

    Article  CAS  Google Scholar 

  35. R. Kurtulus, M.I. Sayyed, T. Kavas, K.A. Mahmoud, O.L. Tashlykov, M.U. Khandaker, D.A. Bradley, Radiat. Phys. Chem. 186, 109557 (2021)

    Article  CAS  Google Scholar 

  36. M.H.A. Mhareb, M. Alqahtani, Y.S.M. Alajerami, F. Alshahri, M.I. Sayyed, K.A. Mahmoud, N. Saleh, N. Alonizan, M.S. Al-Buriahi, K.M. Kaky, Mater. Chem. Phys. 272, 125047 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Taif University Researchers Supporting Project Number (TURSP-2020/109), Taif University, Taif, Saudi Arabia.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by [NE] and [BA]. Simulation and data analysis were performed by [KAM]. The first draft of the manuscript was written by [YSR]; [KAM]. Funding was received by [MMH]. All authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to K. A. Mahmoud.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The submitted work is original and not have been published elsewhere in any form or language.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekinci, N., Mahmoud, K.A., Aygün, B. et al. Impacts of the colemanite on the enhancement of the radiation shielding capacity of polypropylene. J Mater Sci: Mater Electron 33, 20046–20055 (2022). https://doi.org/10.1007/s10854-022-08822-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08822-5

Navigation