Skip to main content
Log in

Investigation of luminescence centers inside InGaN/GaN multiple quantum well over a wide range of temperature and injection currents

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

InGaN/GaN multiple quantum well-based light-emitting diode LEDs were investigated over a wide range of injection currents (0.04 mA–0.1 A) and temperature (80–370 K)-dependent electroluminescence EL measurements. Two centers were identified for blue luminescence peaking at 2.9 eV and 3.0 eV, denoted as BL2 and BL\(_\text {C}\), respectively. Although the 3.0 eV center was more effective than 2.9 eV under low temperature (below 160 K), both vanished completely above 170 K due to the activation of non-radiative recombination under a low-current injection regime. At the same time, EL signal intensity was significantly reduced at a high-current injection regime. The recombination through a point trap in GaN barrier layer (known as H1 trap) in InGaN/GaN multi-quantum well structure was non-radiative recombination process: this leads to either vanishing or weakening of 3.0 eV center and its energy depth were determined as 0.9 eV through temperature-dependent dc current–voltage (IV) and ac capacitance–temperature–frequency (CT\(\omega \)) measurements. The trap depth, thermal quenching of the peak at 3.0 eV, and the sole presence of a peak at 2.9 eV at high temperature might be ascribed to carbon-related defects and agreed with recent theoretical and experimental works in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

We confirm that we have known the research data policy, and the data are available.

References

  1. F. Zimmermann, J. Beyer, C. Röder, F.C. Beyer, E. Richter, K. Irmscher, J. Heitmann, Current status of carbon-related defect luminescence in GaN. Phys. Stat. Sol. A 218, 2100235 (2021). https://doi.org/10.1002/pssa.202100235

    Article  CAS  Google Scholar 

  2. I. Akasaki, H. Amano, Breakthroughs in improving crystal quality of GaN and invention of the p–n junction blue-light-emitting diode. Jpn. J. Appl. Phys. 45(12), 9001–9010 (2006). https://doi.org/10.1143/JJAP.45.9001

    Article  CAS  Google Scholar 

  3. C. Li, Z. Ji, J. Li, M. Xu, H. Xiao, X. Xu, Electroluminescence properties of InGaN/GaN multiple quantum well-based LEDs with different indium contents and different well widths. Sci. Rep. 1, 15301 (2017). https://doi.org/10.1038/s41598-017-15561-9

    Article  CAS  Google Scholar 

  4. S. Krishna, N. Aggarwal, M. Mishra, K.K. Maurya, M. Kaur, G. Sehgal, S. Singh, N. Dilawar, B. Gupta, G. Gupta, Epitaxial growth of high In-content In0. 41Ga0. 59N/GaN heterostructure on (11–20) Al\(_2\)O\(_3\) substrate. J. Alloys Compd. 658, 470–475 (2016). https://doi.org/10.1016/j.jallcom.2015.10.201

    Article  CAS  Google Scholar 

  5. J. Liu, Z. Jia, S. Ma, H. Dong, G. Zhai, B. Xu, Enhancement of carrier localization effect and internal quantum efficiency through In-rich InGaN quantum dots. Superlattices Microstruct. 113, 497–501 (2018). https://doi.org/10.1016/j.spmi.2017.11.026

    Article  CAS  Google Scholar 

  6. J. Yang, D.G. Zhaoa, D.S. Jiang, S.T. Liu, P. Chen, J.J. Zhu, F. Liang, W. Liu, M. Li, Improvement of thermal stability of InGaN/GaN multiple-quantum-well by reducing the density of threading dislocations. Opt. Mater. 85, 14–17 (2018). https://doi.org/10.1016/j.optmat.2018.08.030

    Article  CAS  Google Scholar 

  7. X. Xu, Q. Wang, C. Li, Z. Ji, M. Xu, H. Yang, X. Xu, Enhanced localisation effect and reduced quantum-confined Stark effect of carriers in InGaN/GaN multiple quantum wells embedded in nanopillar. J. Lumin. 203, 216–221 (2018). https://doi.org/10.1016/j.jlumin.2018.06.024

    Article  CAS  Google Scholar 

  8. J. Piprek, Efficiency droop in nitride based light emitting diodes. Phys Stat. Sol. A 207(10), 2217 (2010). https://doi.org/10.1002/pssa.201026149

    Article  CAS  Google Scholar 

  9. D.S. Meyaard, G.B. Lin, Q. Shan, J. Cho, S.E. Fred, H. Shim, M.H. Kim, C. Sone, Asymmetry of carrier transport leading to efficiency droop in GaInN based light-emitting diodes. Appl. Phys. Lett. 99(25), 251115 (2011). https://doi.org/10.1063/1.3671395

    Article  CAS  Google Scholar 

  10. D. Zhu, A.N. Noemaun, M.F. Schubert, J. Cho, E.F. Schubert, M.H. Crawford, D.D. Koleske, Enhanced electron capture and symmetrized carrier distribution in GaInN light-emitting diodes having tailored barrier doping. Appl. Phys. Lett. 96(12), 121110 (2010). https://doi.org/10.1063/1.3371812

    Article  CAS  Google Scholar 

  11. Y.C. Shena, G.O. Mueller, S. Watanabe, N.F. Gardner, A. Munkholm, M.R. Krames, Auger recombination in InGaN measured by photoluminescence. Appl. Phys. Lett. 91(14), 141101 (2007). https://doi.org/10.1063/1.2785135

    Article  CAS  Google Scholar 

  12. A.A. Efremov, N.I. Bochkareva, R.I. Gorbunov, D.A. Larinovich, Y.T. Rebane, D.V. Tarkhin, Y.G. Shreter, Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs. Semiconductors 40, 605 (2006). https://doi.org/10.1134/S1063782606050162

    Article  CAS  Google Scholar 

  13. S. Hammersley, D. Watson-Parris, P. Dawson, M.J. Godfrey, T.J. Badcock, M.J. Kappers, C. McAleese, R.A. Oliver, C.J. Humphreys, The consequences of high injected carrier densities on carrier localization and efficiency droop in InGaN/GaN quantum well structures. J. Appl. Phys. 111(8), 083512 (2012). https://doi.org/10.1063/1.3703062

    Article  CAS  Google Scholar 

  14. M.A. Reshchikov, J.D. McNamara, M. Toporkov, V. Avrutin, H. Morkoç, A. Usikov, H. Helava, Y. Makarov, Determination of the electron-capture coefficients and the concentration of free electrons in GaN from time-resolved photoluminescence. Sci. Rep. 30(6), 37511 (2016). https://doi.org/10.1038/s41598-020-59033-z

    Article  CAS  Google Scholar 

  15. M.A. Reshchikov, A. Usikov, H. Helava, Y. Makarov, V. Prozheeva, I. Makkonen, F. Tuomisto, J.H. Leach, K. Udwary, Evaluation of the concentration of point defects in GaN. Sci. Rep. 7(1), 1–11 (2017). https://doi.org/10.1038/s41598-017-08570-1

    Article  CAS  Google Scholar 

  16. Y.S. Yoo, J.H. Na, S.J. Son, Y.H. Cho, Effective suppression of efficiency droop in GaN-based light-emitting diodes: role of significant reduction of carrier density and built-in field. Sci. Rep. 6(1), 1–9 (2016). https://doi.org/10.1038/srep34586

    Article  CAS  Google Scholar 

  17. I.H. Lee, A.Y. Polyakov, N.B. Smirnov, I.V. Shchemerov, P.B. Lagov, R.A. Zinov’Ev, E.B. Yakimov, K.D. Shcherbachev, S.J. Pearton, Point defects controlling non-radiative recombination in GaN blue light emitting diodes: Insights from radiation damage experiments. J. Appl. Phys. 122(11), 115704 (2017). https://doi.org/10.1063/1.5000956

    Article  CAS  Google Scholar 

  18. J. Wu, W. Walukiewicz, M.K. Yu, J.W. Ager III, E.E. Haller, J. William, Small band gap bowing in In\(_{1- x}\) Ga\(_{ x}\)N alloys. Appl. Phys. Lett. 80(25), 4741–4743 (2002). https://doi.org/10.1063/1.1489481

    Article  CAS  Google Scholar 

  19. K. Dogheche, B. Alshehri, G. Patriache, E. Dogheche, Development of micron sized photonic devices based on deep GaN etching. Photonics 8(3), 68 (2021). https://doi.org/10.3390/photonics8030068

    Article  CAS  Google Scholar 

  20. A.M. Lampert, P. Mark, Current Injection in Solids (Academic Press, Cambridge, 1970). https://doi.org/10.1016/S0080-8784(08)62630-7

    Book  Google Scholar 

  21. A. Hierro, S.A. Ringel, M. Hansen, J.S. Speck, U.K. Mishra, S.P. DenBaars, Hydrogen passivation of deep levels in n-GaN. Appl. Phys. Lett. 77, 1499–1501 (2000). https://doi.org/10.1063/1.1290042

    Article  CAS  Google Scholar 

  22. J.L. Lyons, A. Janotti, C.G. Van De Walle, Carbon impurities and the yellow luminescence in GaN. Appl. Phys. Lett. 97(15), 152108 (2010). https://doi.org/10.1063/1.3492841

    Article  CAS  Google Scholar 

  23. J.L. Lyons, A. Janotti, C.G. Van De Walle, Effects of carbon on the electrical and optical properties of InN, GaN, and AlN. Phys. Rev. B 89(3), 035204 (2014). https://doi.org/10.1103/PhysRevB.89.035204

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Research Fund of the Yıldız Technical University under contract numbers FBA-2022-4983, FBA-2021-4559 and FDK-2019-3525. We are grateful to Prof. Dr. Ayşe Erol and her team for performing photoluminescence measurements.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

The fabrication of the structure and TEM, EDS, and XRD measurements were performed by BA, KD, and ED. E–L and I–V measurements and writing of the article were performed by NAK, OÖ, KB, and HB. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Neslihan Ayarcı Kuruoğlu.

Ethics declarations

Competing Interests

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayarcı Kuruoğlu, N., Özdemir, O., Bozkurt, K. et al. Investigation of luminescence centers inside InGaN/GaN multiple quantum well over a wide range of temperature and injection currents. J Mater Sci: Mater Electron 33, 19151–19159 (2022). https://doi.org/10.1007/s10854-022-08752-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08752-2

Navigation