Skip to main content
Log in

Facile low-cost/temperature nanoarchitectonics of Ag2HgI4 nanostructures and their structural, vibrational, optical, dielectric, and photodetection studies

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Tetraiodomercurate (Ag2HgI4) nanostructures were grown using facile low temperature chemical synthesis technique successfully. As synthesized nanostructures were examined using X-ray diffraction, UV–Vis and Raman spectroscopy. X-ray diffraction pattern of sample reveals pure tetragonal β phase Ag2HgI4 nanostructure growth. The preferred orientation of grown nanostructures was observed along (112) plane and lattice constant was found a = b = 6.31858 Å and c = 12.60247 Å. Raman spectra of nanostructures showed vibrational modes at ~ 60 cm−1, 107 cm−1,151 cm−1, and 268 cm−1 that is confirms growth of pure phase Ag2HgI4 nanostructures. Surface morphology of nanostructures was analyzed using scanning electron microscopy which showed algae type nanostructures in bundles form. Optical bandgap of nanostructures was determined using diffuse reflectance spectra which is obtained in range of 2.45 eV. Dielectric properties of nanostructure were explored as a function of frequency. A significant variation in dielectric constant was observed with frequency, it reduced to about half at high frequency. In addition, optoelectronic performance of nanostructures was also studied. Optoelectronic parameters such as external quantum efficiency (EQE), responsivity and specific detectivity of nanostructures were found to be ~ 27–145, 0.11–0.6 A/W and 2.0 × 1010–1.07 × 1011 Jones; respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. M. Yamashita, Bull. Chem. Soc. Jpn. 94, 209–264 (2021)

    Article  CAS  Google Scholar 

  2. X. Schen, Q. Zheng, J.K. Kim, Prog. Mater. Sci. 115, 100708 (2021)

    Article  CAS  Google Scholar 

  3. K. Ariga, Nanoscale Horiz. 6, 364–378 (2021)

    Article  CAS  Google Scholar 

  4. J.A.A. Ketelaar, Z. Kristallogr. 87, 327 (1934)

    Google Scholar 

  5. S. Hull, D.A. Keen, J. Phys. Condens. Matter 12, 3751 (2000)

    Article  CAS  Google Scholar 

  6. A.M. Salem, Y.A. El-Gendy, G.B. Sakr, W.Z. Soliman, Optical properties of thermochromic Cu2HgI2 thin films. J. Phys. D 41(7), 025311 (2008)

    Article  CAS  Google Scholar 

  7. S.J. Chivian, R.N. Claytor, D.D. Eden, Infrared Holography at 10.6 μm. Appl. Phys. Lett. 15, 123 (1969)

    Article  CAS  Google Scholar 

  8. J.W.B. Well, C.N. Buckley, R.C. Hollyoak, B. Ray, J. Mater. Sci. Lett. 3, 443–446 (1984)

    Article  Google Scholar 

  9. F. Soofivand, M. Salavati-Niasari, J. Mol. Liq. 252, 112–120 (2018)

    Article  CAS  Google Scholar 

  10. R. Sudharsanan, B. Clayman, Far infrared studies on the superionic coductor Ag2HgI4. Solid State Ion. 15, 287–291 (1985)

    Article  CAS  Google Scholar 

  11. S. Hull, D.A. Keen, J. Phys. 13, 5597 (2001)

    CAS  Google Scholar 

  12. A.M. Salem, Y.A. El-Gendy, G.B. Sakr, AC conductivity and dielectric properties of Cu2HgI4. Chin. J. Phys. 47, 874–884 (2009)

    CAS  Google Scholar 

  13. A. Kumar, K. Shahi, J. Phys. Chem. Solids 56, 215 (1995)

    Article  CAS  Google Scholar 

  14. T.J. Neubert, G.M. Nicholas, Am. Chem. Soc. 11, 2619–2623 (1958)

    Article  Google Scholar 

  15. S. Ma, H. Yu, H. Zhang, X. Han, Q. Lu, C. Ma, R.I. Boughton, J. Wang, Efficient high repetition rate electro-optic Q-switched laser with an optically active langasite crystal. Sci. Rep. 6, 30517 (2016)

    Article  CAS  Google Scholar 

  16. Z. Li, X.-W. Wu, N. Wu, Y.-Y. Fan, X.-C. Sun, T.-T. Song, Q. Zhong, Shape-stabilized thermochromic phase-change materials. J. Thermophys. Heat Transf. 32, 269–272 (2018)

    Article  Google Scholar 

  17. P.J. Roney, A. Shahsafi, Z. Zhang, Y. Zhou, Y. Xiao, C. Wan, R. Wambold, J. Salman, S. Ramanathan, M. Kats, Zero-differential thermal emission using thermochromic samarium nickelate, in CLEO: QELS_Fundamental Science. (Optical Society of America, Washington, 2017)

    Google Scholar 

  18. Y. Jin, C. Shi, X. Li, F. Wang, M. Ge, Preparation and luminescence studies of thermosensitive PAN luminous fiber based on the heat sensitive rose red TF-R1 thermochromic pigment. Dyes Pigm. 139, 693–700 (2017)

    Article  CAS  Google Scholar 

  19. P.K. Peter, S.J. Lippard, Copper (II) chemistry in hexaaza binucleating macrocycles: hydroxide and acetate derivatives. J. Am. Chem. Soc. 106, 2328 (1984)

    Article  Google Scholar 

  20. D.E. Fenton, U. Casellato, M. Vidali, The evolution of binucleating ligands. Chim. Acto 62, 57 (1982)

    CAS  Google Scholar 

  21. S. Jay, R.N. Chivian, D.D. Claytor, R.B. Eden, Hemphill, infrared recording with thermochromic Cu2Hgl4. Appl. Opt. 11, 2649 (1972)

    Article  Google Scholar 

  22. C. Yang, X. Liu, C. Teng, X. Cheng, F. Liang, Q. Wu, Mater. Today Phys. 19, 100432 (2021)

    Article  CAS  Google Scholar 

  23. F. Liang, Z.S. Lin, Y.C. Wu, First principle study of nonlinear optical crystals. Acta Phys. Sin. 67, 114203 (2018)

    Article  CAS  Google Scholar 

  24. J.W. Brightwell, C.N. Buckley, R.C. Hollyoak, B. Ray, Structural and phase equilibrium comparisons of Ag2HgI4 with Ag2CdI4 and Ag2ZnI4. J. Mater. Sci. Lett. 3, 443–446 (1984)

    Article  CAS  Google Scholar 

  25. J. Schwiertz, Andre geist and matthias epple. Dalton Trans. (2009). https://doi.org/10.1039/b819863b

    Article  Google Scholar 

  26. D.C. Parfitt, S. Hull, D.A. Keen, W. Crichton, J. Solid State Chem. 177, 3715–3720 (2004)

    Article  CAS  Google Scholar 

  27. N.A. Ahmad, Cent. Eur. J. Chem. 8(6), 1227–1235 (2010)

    Google Scholar 

  28. Z.R. Khan, M. Shkir, Phys. B 627, 413612 (2022)

    Article  CAS  Google Scholar 

  29. R. Sudharsanan, B.P. Clayman, Solid State Ion. 15, 287–291 (1985)

    Article  CAS  Google Scholar 

  30. O.E. Pecho, R. Ghineaa, A.M. Ionescua, J.C. Cardonaa, A.D. Bonab, M. del Mar Pérez, Dent. Mater. 31, 60–70 (2015)

    Article  CAS  Google Scholar 

  31. S. Landi Jr., I.R. Segundo, E. Freitas, M. Vasilevskiy, J. Carneiro, C.J. Tavares, Solid State Commun. 341, 114573 (2022)

    Article  CAS  Google Scholar 

  32. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 15, 627–637 (1966). https://doi.org/10.1002/pssb.19660150224

    Article  CAS  Google Scholar 

  33. S.S.N. Potty, M.A. Khadar, Bull. Mater. Sci. 23(5), 361–367 (2000)

    Article  Google Scholar 

  34. M. Shkir, Z.R. Khan, K.V. Chandekar, T. Alshahrani, A. Kumar, S. AlFaify, Appl. Nanosci. 10, 3973–3985 (2020)

    Article  CAS  Google Scholar 

  35. K.W. Wagner, Electricity and magnetism. Ann. Phys. 40, 817 (1913)

    Article  Google Scholar 

  36. X. Li, Y. Xiang, J. Wan, Z. Xiao, H. Yuan, J. Sun, Y. Liu, G. Dai, J. Yang, Org. Electron. 101, 106409 (2022)

    Article  CAS  Google Scholar 

  37. H. Zhang, T. Abdiryim, R. Jamal, J. Li, H. Liu, A. Kadir, D. Zou, Y. Che, N. Serkjan, J Alloys Compd. 899, 163279 (2022)

    Article  CAS  Google Scholar 

  38. B. Hanna, K.P. Surendran, K.N. Narayanan Unni, RSC Adv. 8, 37365–37374 (2018)

    Article  Google Scholar 

  39. C.C.S. Maria, R.A. Patil, D.P. Hasibuan, C.S. Saragih, C.-C. Lai, Y. Liou, Y.-R. Ma, Appl. Surf. Sci. 584, 152608 (2022). https://doi.org/10.1016/j.apsusc.2022.152608

    Article  CAS  Google Scholar 

  40. M. Ahmadi, M. Abrari, M. Ghanaatshoar, Sci. Rep. 11(1), 18694 (2021). https://doi.org/10.1038/s41598-021-98273-5

    Article  CAS  Google Scholar 

  41. R. Debnath, T. Xie, B. Wen, W. Li, J.Y. Ha, N.F. Sullivan, N.V. Nguyen, A. Motayed, RSC Adv. 5, 14646–14652 (2015)

    Article  CAS  Google Scholar 

  42. C. Ma, Y. Shi, W. Hu et al., Hetero structured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity. Adv. Mater. 28(2016), 3683–3689 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors from KKU would like to express their gratitude to Deanship of Scientific research at King Khalid University for funding this work through Research Groups Program under Grant No. R.G.P.2/250/43.

Author information

Authors and Affiliations

Authors

Contributions

MS have synthesized Ag2HgI4 nanostructures using cost effective technique. IMA have examined and recorded photodetection properties of nanostructures. ZRK (corresponding author) have analysed data and prepared manuscript. All the authors have contributed equally in this manuscript.

Corresponding author

Correspondence to Z. R. Khan.

Ethics declarations

Conflict of interest

Authors have none to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, I.M., Khan, Z.R. & Shkir, M. Facile low-cost/temperature nanoarchitectonics of Ag2HgI4 nanostructures and their structural, vibrational, optical, dielectric, and photodetection studies. J Mater Sci: Mater Electron 33, 18807–18815 (2022). https://doi.org/10.1007/s10854-022-08730-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08730-8

Navigation