Skip to main content
Log in

Self-powered photosensing and biosensing using hydrothermally grown CdS nanorods

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Self-powered visible photosensing and glucose sensing properties of CdS nanorods (NRs) have been investigated. CdS NRs were grown on fluorine-doped tin oxide (FTO)-coated glass substrates using hydrothermal method. Self-powered photodetection of CdS NRs has been studied after spin coating of poly(3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS) conducting polymer on the nanorod surface. The device performance has been improved after the treatment of PEDOT-PSS polymer with dimethyl sulfoxide (DMSO) solvent. The maximum responsivity \({(R}_{\lambda })\) of the photodetector has been obtained ~ 11.88A/W at 500 nm wavelength at zero bias. Self-powered glucose sensing has been demonstrated in a photoelectrochemical cell using CdS NRs as photoanodes. The sensitivity towards glucose detection has been obtained 11.24 nA.cm−2. μM−1 under illumination of white LED light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Z.L. Wang, Adv. Funct. Mater. 18, 3553 (2008)

    Article  CAS  Google Scholar 

  2. Z.L. Wang, W. Wu, Angew. Chem. Int. Ed. 51, 11700 (2012)

    Article  CAS  Google Scholar 

  3. Z.L. Wang, ACS Nano 7, 9533 (2013)

    Article  CAS  Google Scholar 

  4. L. Peng, L. Hu, X. Fang, Adv. Funct. Mater. 24, 2591 (2014)

    Article  CAS  Google Scholar 

  5. Z. Bai, X. Chen, X. Yan, X. Zheng, Z. Kang, Y. Zhang, Phys. Chem. Chem. Phys. 16, 9525 (2014)

    Article  CAS  Google Scholar 

  6. W. Zang, P. Li, Y. Fu, L. Xing, X. Xue, RSC Adv. 5, 84343 (2015)

    Article  CAS  Google Scholar 

  7. D. Xiang, C. Han, Z. Hu, B. Lei, Y. Liu, L. Wang, W.P. Hu, W. Chen, Small 11, 4829 (2015)

    Article  CAS  Google Scholar 

  8. W. Zhao, L. Liu, M. Xu, X. Wang, T. Zhang, Y. Wang, Z. Zhang, S. Qin, Z. Liu, Adv. Opt. Mater. 5, 1700159 (2017)

    Article  CAS  Google Scholar 

  9. L. Cao, J.S. White, J.-S. Park, J.A. Schuller, B.M. Clemens, M.L. Brongersma, Nat. Mater. 8, 643 (2009)

    Article  CAS  Google Scholar 

  10. G. Li, Y. Jiang, Y. Zhang, X. Lan, T. Zhai, G.-C. Yi, J Mater Chem C 2, 8252 (2014)

    Article  CAS  Google Scholar 

  11. J.L. Xie, C.X. Guo, C.M. Li, Energy Environ. Sci. 7, 2559 (2014)

    Article  CAS  Google Scholar 

  12. H. Li, X. Wang, J. Xu, Q. Zhang, Y. Bando, D. Golberg, Y. Ma, T. Zhai, Adv. Mater. 25, 3017 (2013)

    Article  CAS  Google Scholar 

  13. T. Zhai, X. Fang, L. Li, Y. Bando, D. Golberg, Nanoscale 2, 168 (2010)

    Article  CAS  Google Scholar 

  14. R. Bao, C. Wang, L. Dong, C. Shen, K. Zhao, C. Pan, Nanoscale 8, 8078 (2016)

    Article  CAS  Google Scholar 

  15. X. Duan, Y. Huang, R. Agarwal, C.M. Lieber, Nature 421, 241 (2003)

    Article  CAS  Google Scholar 

  16. Q. Bao, W. Li, P. Xu, M. Zhang, D. Dai, P. Wang, X. Guo, L. Tong, Light Sci. Appl. 9, 42 (2020)

    Article  CAS  Google Scholar 

  17. R. Aruna-Devi, L. Marasamy, J. Cruz-Gómez, S.A. Mayén-Hernández, F. De Moure-Flores, J. Santos-Cruz, Mater. Lett. 282, 128856 (2021)

    Article  CAS  Google Scholar 

  18. S.P. Pishekloo, R.S. Dariani, F. Salehi, Mater. Sci. Semicond. Process. 43, 182 (2016)

    Article  CAS  Google Scholar 

  19. D.O. Grynko, O.M. Fedoryak, P.S. Smertenko, N.A. Ogurtsov, A.A. Pud, Yu.V. Noskov, O.P. Dimitriev, Adv. Mater. Res. 854, 75 (2013)

    Article  CAS  Google Scholar 

  20. X.-X. Yu, H. Yin, H.-X. Li, H. Zhao, C. Li, M.-Q. Zhu, J. Mater. Chem. C 6, 630 (2018)

    Article  CAS  Google Scholar 

  21. M.Z. Nawaz, L. Xu, X. Zhou, K.H. Shah, J. Wang, B. Wu, C. Wang, Mater. Adv. 2, 6031 (2021)

    Article  CAS  Google Scholar 

  22. X.-X. Yu, H. Yin, H.-X. Li, W. Zhang, H. Zhao, C. Li, M.-Q. Zhu, Nano Energy 34, 155 (2017)

    Article  CAS  Google Scholar 

  23. P. Gai, S. Zhang, W. Yu, H. Li, F. Li, J. Mater. Chem. B 6, 6842 (2018)

    Article  CAS  Google Scholar 

  24. K. Zhao, X. Yan, Y. Gu, Z. Kang, Z. Bai, S. Cao, Y. Liu, X. Zhang, Y. Zhang, Small 12, 245 (2016)

    Article  CAS  Google Scholar 

  25. X. Zhang, F. Xu, B. Zhao, X. Ji, Y. Yao, D. Wu, Z. Gao, K. Jiang, Electrochim. Acta 133, 615 (2014)

    Article  CAS  Google Scholar 

  26. Y. Al-Douri, A.H. Reshak, Optik 126, 5109 (2015)

    Article  CAS  Google Scholar 

  27. K.-J. Wu, K.-C. Chu, C.-Y. Chao, Y.-F. Chen, C.-W. Lai, C.-C. Kang, C.-Y. Chen, P.-T. Chou, Nano Lett. 7, 1908 (2007)

    Article  CAS  Google Scholar 

  28. X. Yang, Y. Yang, B. Wang, T. Wang, Y. Wang, D. Meng, Solid State Sci. 92, 31 (2019)

    Article  CAS  Google Scholar 

  29. M. Ashrafi, A. Salimi, A. Arabzadeh, J. Electroanal. Chem. 783, 233 (2016)

    Article  CAS  Google Scholar 

  30. R.S. Ganesh, E. Durgadevi, M. Navaneethan, S.K. Sharma, H.S. Binitha, S. Ponnusamy, C. Muthamizhchelvan, Y. Hayakawa, Chem. Phys. Lett. 684, 126 (2017)

    Article  CAS  Google Scholar 

  31. H. Chen, D. Jiang, Z. Sun, R.M. Irfan, L. Zhang, P. Du, Catal. Sci. Technol. 7, 1515 (2017)

    CAS  Google Scholar 

  32. B.D. Viezbicke, S. Patel, B.E. Davis, D.P. Birnie, Phys. Status Solidi B 252, 1700 (2015)

    Article  CAS  Google Scholar 

  33. K.V. Khot, S.S. Mali, R.R. Kharade, R.M. Mane, P.S. Patil, C.K. Hong, J.H. Kim, J. Heo, P.N. Bhosale, J. Mater. Sci. Mater. Electron. 25, 5606 (2014)

    Article  CAS  Google Scholar 

  34. W.H. Strehlow, E.L. Cook, J. Phys. Chem. Ref. Data 2, 163 (1973)

    Article  CAS  Google Scholar 

  35. V.V. Kislyuk, M.I. Fedorchenko, P.S. Smertenko, O.P. Dimitriev, A.A. Pud, J. Phys. Appl. Phys. 43, 185301 (2010)

    Article  CAS  Google Scholar 

  36. S. Dhar, T. Majumder, P. Chakraborty, S.P. Mondal, Org. Electron. 53, 101 (2018)

    Article  CAS  Google Scholar 

  37. L. Su, W. Yang, J. Cai, H. Chen, X. Fang, Small 13, 1701687 (2017)

    Article  CAS  Google Scholar 

  38. V.V. Kislyuk, P.S. Smertenko, O.P. Dimitriev, A.A. Pud, Eur. Phys. J. Appl. Phys. 51, 20301 (2010)

    Article  CAS  Google Scholar 

  39. N. Deka, P. Chakraborty, D. Chandra Patra, S. Dhar, S.P. Mondal, Mater Sci. Semicond. Process. 118, 1051 (2020)

    Article  CAS  Google Scholar 

  40. L. He, Q. Zhang, C. Gong, H. Liu, F. Hu, F. Zhong, G. Wang, H. Su, S. Wen, S. Xiang, B. Zhang, Sens. Actuators B Chem. 310, 127842 (2020)

    Article  CAS  Google Scholar 

  41. H. Huo, Z. Xu, T. Zhang, C. Xu, J. Mater. Chem. A 3, 5882 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was partially funded by SERB, Core Research Grant Project of Sanctioned No. CRG/2018/001636, Govt. of India. We acknowledged the central research facility (CRF) of NIT Agartala for UV -visible spectroscopy, XRD and AFM measurements.

Author information

Authors and Affiliations

Authors

Contributions

ND contributed to conceptualization, methodology, data collection and writing-original draft preparation. DCP and PC contributed to sample characterization and experimental help. SPM contributed to supervision, correction of manuscript, and academic discussion.

Corresponding author

Correspondence to Suvra Prakash Mondal.

Ethics declarations

Conflict of interest

All authors have declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deka, N., Patra, D.C., Chakraborty, P. et al. Self-powered photosensing and biosensing using hydrothermally grown CdS nanorods. J Mater Sci: Mater Electron 33, 17688–17698 (2022). https://doi.org/10.1007/s10854-022-08632-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08632-9

Navigation