Skip to main content
Log in

Understanding the influences of In-situ annealing and substrate vibration on the charge carrier dynamics of ultrasonic spray-coated polymer solar cell

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Detailed understanding of the various influences of deposition conditions on the structure–property relationship for spray-coated polymer films is crucial for their scalable device applications. In the present study, the influences of in-situ substrate temperature and acoustic substrate vibration on the charge carrier dynamics of poly(3-hexylthiophene) and [6,6]-phenyl-C71-butyric acid methyl ester (P3HT:PC71BM) based ultrasonic spray-coated polymer solar cells have been investigated thoroughly by employing Impedance spectroscopy, Mott–Schottky analysis, Urbach energy analysis, and trap-state density estimations. The device prepared under the influences of in-situ substrate temperature and acoustic substrate vibration shows more than three times enhancement in PCE (3.24%) compared to that of the reference one (0.9%). A correlation between charge transport behaviour and deposition conditions has been identified for the devices. The surface roughness and rigid droplet boundaries were found to set major performance limitations. The overall resistance of the devices was found to get decreased by 70% whilst the global charge carrier mobility was found to get increased from 6.09 × 10–5 to 9.43 × 10–4 cm2 V−1 s−1 with the simultaneous application of substrate temperature and acoustic vibration, forming uniform and homogeneous films with much reduced surface roughness and droplet boundaries compared to the untreated reference devices. Systematic variation in the trap and defect-state densities were also observed. The trap-state density reduced from 5.03 × 1015 to 2.71 × 1015 cm−3 after the combined treatment of in-situ annealing and substrate vibration. Urbach energy was found to be 218.4 meV for the untreated active layer, which reduced to 177.2 meV for the active layer treated with in-situ-annealing and acoustic substrate vibration. The superior electrical properties achieved by optimizing the active layer morphology using different spray deposition conditions led to around four times enhancement in device efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. A.J. Heeger, Chem Soc Rev 39, 2354 (2010)

    Article  CAS  Google Scholar 

  2. L. Lu, T. Zheng, Q. Wu, A.M. Schneider, D. Zhao, L. Yu, Chem Rev 115, 12666 (2015)

    Article  CAS  Google Scholar 

  3. A.R. Murad, A. Iraqi, S.B. Aziz, S.N. Abdullah, M.A. Brza, Polymers (Basel) 12, 1 (2020)

    Google Scholar 

  4. M. Benghanem, A. Almohammedi, in Advanced Structured Materials (2020), pp. 81–106.

  5. L. Dou, J. You, Z. Hong, Z. Xu, G. Li, R.A. Street, Y. Yang, Adv. Mater. 25, 6642 (2013)

    Article  CAS  Google Scholar 

  6. F. Zhang, O. Inganäs, Y. Zhou, K. Vandewal, Natl. Sci. Rev. 3, 222 (2016)

    Article  CAS  Google Scholar 

  7. J. Nelson, Mater. Today 14, 462 (2011)

    Article  CAS  Google Scholar 

  8. S. Karak, S. Pradhan, A. Dhar, Semicond. Sci. Technol. 26, 095020 (2011)

    Article  CAS  Google Scholar 

  9. P. Cheng, X. Zhan, Chem. Soc. Rev. 45, 2544 (2016)

    Article  CAS  Google Scholar 

  10. M. Helgesen, R. Søndergaard, F.C. Krebs, J. Mater. Chem. 20, 36 (2010)

    Article  CAS  Google Scholar 

  11. S. Karak, Z. A. Page, J. S. Tinkham, P. M. Lahti, T. Emrick, and V. v. Duzhko, Appl. Phys. Lett. 106, 103303 (2015)

  12. S. Karak, Z. A. Page, S. Li, J. S. Tinkham, P. M. Lahti, V. v. Duzhko, and T. Emrick, Sustain. Fuels 2, 2143 (2018)

  13. S. Pareek, S. Waheed, A. Rana, P. Sharma, S. Karak, Nano Express 1, 010057 (2020)

    Article  Google Scholar 

  14. S. Karak, P. J. Homnick, A. M. della Pelle, Y. Bae, V. v. Duzhko, F. Liu, T. P. Russell, P. M. Lahti, and S. Thayumanavan, ACS Appl. Mater. Interfaces 6, 11376 (2014)

  15. S. Karak, P.J. Homnick, L.A. Renna, D. Venkataraman, J.T. Mague, P.M. Lahti, ACS Appl. Mater. Interfaces. 6, 16476 (2014)

    Article  CAS  Google Scholar 

  16. C. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, J. Min, Y. Zhang, Z. Xie, Y. Yi, H. Yan, F. Gao, F. Liu, Y. Sun, Nat. Energy 6, 605 (2021)

    Article  CAS  Google Scholar 

  17. H. Bin, J. Wang, J. Li, M.M. Wienk, R.A.J. Janssen, Adv Mater 33, e2008429 (2021)

    Article  CAS  Google Scholar 

  18. J. Wang, Z. Zheng, Y. Zu, Y. Wang, X. Liu, S. Zhang, M. Zhang, J. Hou, Adv. Mater. 33, 2102787 (2021)

    Article  CAS  Google Scholar 

  19. R. Xue, J. Zhang, Y. Li, Y. Li, Small 14, 1 (2018)

    Google Scholar 

  20. F.C. Krebs, Sol. Energy Mater. Sol. Cells 93, 394 (2009)

    Article  CAS  Google Scholar 

  21. F. Aziz, A.F. Ismail, Mater. Sci. Semicond. Process. 39, 416 (2015)

    Article  CAS  Google Scholar 

  22. M. Eslamian, Coatings 4, 60 (2014)

    Article  CAS  Google Scholar 

  23. X.Y. Zhao, X. Wang, S.L. Lim, D. Qi, R. Wang, Z. Gao, B. Mi, Z.K. Chen, W. Huang, W. Deng, Sol. Energy Mater. Sol. Cells 121, 119 (2014)

    Article  CAS  Google Scholar 

  24. T. J. Routledge, D. G. Lidzey, and A. R. Buckley, AIP Adv. 9, 1 (2019)

  25. Y.-C. Huang, C.-S. Tsao, H.-C. Cha, C.-M. Chuang, C.-J. Su, U.-S. Jeng, C.-Y. Chen, Sci. Rep. 6, 20062 (2016)

    Article  CAS  Google Scholar 

  26. D. Vak, S.S. Kim, J. Jo, S.H. Oh, S.I. Na, J. Kim, D.Y. Kim, Appl. Phys. Lett. 91, 1 (2007)

    Article  CAS  Google Scholar 

  27. G. Susanna, L. Salamandra, T.M. Brown, A. Di Carlo, F. Brunetti, A. Reale, Sol. Energy Mater. Sol. Cells 95, 1775 (2011)

    Article  CAS  Google Scholar 

  28. Y. Zhang, J. Griffin, N.W. Scarratt, T. Wang, D.G. Lidzey, Prog. Photovolt. Res. Appl. 24, 275 (2016)

    Article  CAS  Google Scholar 

  29. J. Cheng, S. Wang, Y. Tang, R. Hu, X. Yan, Z. Zhang, L. Li, Q. Pei, Solar RRL 4, 1900458 (2020)

    Article  CAS  Google Scholar 

  30. M.H. Kang, D.K. Heo, D.H. Kim, M. Lee, K. Ryu, Y.H. Kim, C. Yun, IEEE J. Electron Dev. Soc. 7, 1129 (2019)

    Article  CAS  Google Scholar 

  31. S. Arumugam, Y. Li, M. Glanc-Gostkiewicz, R.N. Torah, S.P. Beeby, IEEE J. Photovolt. 8, 1710 (2018)

    Article  Google Scholar 

  32. A. Reale, L. LaNotte, L. Salamandra, G. Polino, G. Susanna, T.M. Brown, F. Brunetti, A. DiCarlo, L. la Notte, L. Salamandra, G. Polino, G. Susanna, T.M. Brown, F. Brunetti, A. di Carlo, Energy Technol. 3, 385 (2015)

    Article  CAS  Google Scholar 

  33. B.K. Yu, D. Vak, J. Jo, S.I. Na, S.S. Kim, M.K. Kim, D.Y. Kim, IEEE J. Select. Top. Quant. Electron. 16, 1838 (2010)

    Article  CAS  Google Scholar 

  34. S. Waheed, S. Pareek, P. Sharma, S. Karak, Semicond. Sci. Technol. 36, 015002 (2020)

    Article  CAS  Google Scholar 

  35. S. Waheed, S. Pareek, P. Singh, P. Sharma, A. Rana, S. Karak, IEEE J. Photovolt. 10, 1727 (2020)

    Article  Google Scholar 

  36. N.K. Elumalai, A. Uddin, Energy Environ. Sci. 9, 391 (2016)

    Article  CAS  Google Scholar 

  37. M. Knipper, J. Parisi, K. Coakley, C. Waldauf, C.J. Brabec, V. Dyakonov, Zeitsch. Naturforsch. A 62, 490 (2007)

    Article  CAS  Google Scholar 

  38. E. von Hauff, J. Phys. Chem. C 123, 11329 (2019)

    Article  CAS  Google Scholar 

  39. G. Garcia-Belmonte, A. Munar, E.M. Barea, J. Bisquert, I. Ugarte, R. Pacios, Org. Electron. 9, 847 (2008)

    Article  CAS  Google Scholar 

  40. G. Garcia-Belmonte, P.P. Boix, J. Bisquert, M. Sessolo, H.J. Bolink, Sol. Energy Mater. Sol. Cells 94, 366 (2010)

    Article  CAS  Google Scholar 

  41. F. Fabregat-Santiago, G. Garcia-Belmonte, I. Mora-Seró, J. Bisquert, Phys. Chem. Chem. Phys. 13, 9083 (2011)

    Article  CAS  Google Scholar 

  42. G. Garcia-Belmonte, A. Guerrero, J. Bisquert, The Journal of Physical Chemistry Letters 4, 877 (2013)

    Article  CAS  Google Scholar 

  43. O. Oklobia, S. Komilian, T. Sadat-Shafai, Org. Electron. 61, 276 (2018)

    Article  CAS  Google Scholar 

  44. S.K. Gupta, L.S. Pali, A. Garg, Sol. Energy 178, 133 (2019)

    Article  CAS  Google Scholar 

  45. B.J. Leever, C.A. Bailey, T.J. Marks, M.C. Hersam, M.F. Durstock, Adv. Energy Mater. 2, 120 (2012)

    Article  CAS  Google Scholar 

  46. E.P. Yao, C.C. Chen, J. Gao, Y. Liu, Q. Chen, M. Cai, W.C. Hsu, Z. Hong, G. Li, Y. Yang, Sol. Energy Mater. Sol. Cells 130, 20 (2014)

    Article  CAS  Google Scholar 

  47. C. Zhao, X. Qiao, B. Chen, B. Hu, Org. Electron. 14, 2192 (2013)

    Article  CAS  Google Scholar 

  48. X. Zhu, K. Wang, J. He, L. Zhang, H. Yu, D. He, B. Hu, The Journal of Physical Chemistry C 123, 20691 (2019)

    Article  CAS  Google Scholar 

  49. J. Schafferhans, A. Baumann, A. Wagenpfahl, C. Deibel, V. Dyakonov, Org. Electron. 11, 1693 (2010)

    Article  CAS  Google Scholar 

  50. A. Seemann, T. Sauermann, C. Lungenschmied, O. Armbruster, S. Bauer, H.J. Egelhaaf, J. Hauch, Sol. Energy 85, 1238 (2011)

    Article  CAS  Google Scholar 

  51. Q. Shen, Y. Ogomi, J. Chang, T. Toyoda, K. Fujiwara, K. Yoshino, K. Sato, K. Yamazaki, M. Akimoto, Y. Kuga, K. Katayama, S. Hayase, J. Mater. Chem. A 3, 9308 (2015)

    Article  CAS  Google Scholar 

  52. P. Sharma, A. Rana, S. Waheed, S. Pareek, S. Karak, Nanotechnology 32, 265401 (2021)

    Article  CAS  Google Scholar 

  53. R.H. Bube, J. Appl. Phys. 33, 1733 (1962)

    Article  CAS  Google Scholar 

  54. A. Choudhury, R.K. Gupta, R. Garai, P.K. Iyer, Adv. Mater. Interfaces 8, 2100574 (2021)

    Article  CAS  Google Scholar 

  55. V.D. Mihailetchi, L.J.A. Koster, J.C. Hummelen, P.W.M. Blom, Phys. Rev. Lett. 93, 19 (2004)

    Article  CAS  Google Scholar 

  56. F. Zhao, S. Dai, Y. Wu, Q. Zhang, J. Wang, L. Jiang, Q. Ling, Z. Wei, W. Ma, W. You, C. Wang, X. Zhan, Adv. Mater. 29, 1700144 (2017)

    Article  CAS  Google Scholar 

  57. J. Bisquert, G. Garcia-Belmonte, J. Phys. Chem. Lett. 2, 1950 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Science and Engineering Research Board, Department of Science and Technology (Project no. ECR/2017/000152), and DST-INSPIRE Fellowship program for financial support. We are also thankful to Nanoscale Research Facility and Central Research Facility, IIT Delhi for the characterization facilities.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SK, SW, and SP; Methodology: SW, SP, and AT; Formal analysis and investigation: SW, SP, AT, RS, and PS; Writing original draft preparation: SW, SP, AT, and SK; Writing review and editing: SK; Funding acquisition: SK, and SW; Supervision: SK.

Corresponding author

Correspondence to Supravat Karak.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material. The supplementary information contains the table with photovoltaic parameter values for each device, photocurrent versus effective voltage curve, and discusses the optical microscope images of spray-coated films deposited at different conditions.

Supplementary file1 (DOCX 3594 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waheed, S., Pareek, S., Abhijith, T. et al. Understanding the influences of In-situ annealing and substrate vibration on the charge carrier dynamics of ultrasonic spray-coated polymer solar cell. J Mater Sci: Mater Electron 33, 15180–15190 (2022). https://doi.org/10.1007/s10854-022-08437-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08437-w

Navigation