Skip to main content
Log in

Transfer of graphene thin film obtained by PECVD method to Au/p-Si rectifier junction as interfacial layer and analysis of its barrier characteristics depending on sample temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

It is well known that in metal–semiconductor rectifier junctions with an interface layer, the drop potential across the interface layer modifies the barrier height by changing the electric field in the semiconductor. Therefore, examining the barrier characteristics of such structures depending on the sample temperature is important in the development of novel devices. Based on this assumption, in order to interpret the barrier characteristics of the Au/Graphene/p-Si/Al structure in detail, its current–voltage (I–V) measurements were measured under dark conditions in the temperature range of 120–320 K in 20 K steps. Graphene thin film was grown on copper foil by plasma-enhanced chemical vapor deposition (PECVD) method and then transferred as an interfacial layer on the clean and polish surface of p-Si semiconductor base material made ohmic contact with aluminum metal. After examining the morphological and optical properties of the produced film, the gold metal was evaporated onto the film under vacuum conditions to have a circular contact area of 1 mm diameter, as it is necessary for electrical measurements. Various characteristic parameters such as ideality factor, barrier height, saturation current, threshold voltage, rectifying ratio, and series resistance of Au/Graphene/p-Si/Al structure were calculated from I–V measurements taken depending on sample temperature using Rhoderick, Norde, Cibils, and Chattopadhyay methods. The obtained results were interpreted comparatively on the basis of Tung's inhomogeneous barrier model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. L.J. Brillson (eds), Contacts to Semiconductors; Fundamentals and Technology (Noyes Publications, New Jersey, 1993)

  2. D.A. Neamen, Semiconductor Physics and Devices: Basic Principles, 4th edn. (The McGraw-Hill Companies, New York, 2012)

    Google Scholar 

  3. E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts, 2nd edn. (Clerandon, Oxford, 1988)

    Google Scholar 

  4. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (John Wiley, New York, 1981)

    Google Scholar 

  5. G. Ghione, Semiconductor Devices for High-Speed Optoelectronics (Cambridge University Press, New York, 2009)

    Book  Google Scholar 

  6. J.M. Liu, Photonic Devices (Cambridge University Press, New York, 2005)

    Book  Google Scholar 

  7. A. Kocyigit, İ Orak, Z. Çaldıran, A. Türüt, Current–voltage characteristics of Au/ZnO/n-Si device in a wide range temperature. J. Mater. Sci.: Mater. Electron. 28(22), 17177–17184 (2017)

    CAS  Google Scholar 

  8. A.S. Kavasoğlu, F. Yakuphanoğlu, N. Kavasoğlu, O. Pakma, Ö. Birgi, Ş Oktik, The analysis of the charge transport mechanism of n-Si/MEH-PPV device structure using forward bias I-V-T characteristics. J. Alloys Compd. 492, 421–426 (2010)

    Article  CAS  Google Scholar 

  9. M. Sağlam, A. Ateş, M.A. Yıldırım, B. Güzeldir, A. Astam, Temperature dependent current-voltage characteristics of the Cd/CdO/n-Si/Au-Sb structure. Curr. Appl. Phys. 10, 513–520 (2010)

    Article  Google Scholar 

  10. A. Türüt, D.E. Yıldız, A. Karabulut, İ Orak, Electrical characteristics of atomic layer deposited Au/Ti/HfO2/n-GaAs MIS diodes in the wide temperature range. J. Mater. Sci.: Mater. Electron. 4, 7839–7849 (2020)

    Google Scholar 

  11. A.F. Özdemir, Z. Kotan, D.A. Aldemir, Ş Altındal, The effects of the temperature on I-V and C-V characteristics of Al/P2ClAn(C2H5COOH)/p-Si/Al structure. Eur. Phys. J. Appl. Phys. 46, 20402 (2009)

    Article  CAS  Google Scholar 

  12. K. Moraki, S. Bengi, S. Zeyrek, M.M. Bülbül, Ş Altındal, Temperature dependence of characteristic parameters of the Au/C20H12/n-Si Schottky barrier diodes (SBDs) in the wide temperature range. J. Mater. Sci.: Mater. Electron. 28, 3987–3996 (2017)

    CAS  Google Scholar 

  13. G. Cebisli, S. Asubay, Y.S. Ocak, Reactively sputtered MoO3 thin films and temperature dependence of electrical properties of an Ag/MoO3/n-Si diode. J. Ovonic Res. 14(6), 405–414 (2018)

    CAS  Google Scholar 

  14. B. Güzeldir, M. Sağlam, A. Ateş, Analysis of the electrical characteristics of Zn/ZnSe/n-Si/Au-Sb structure fabricated using SILAR method as a function of temperature. J. Alloys Compd. 506, 388–394 (2010)

    Article  CAS  Google Scholar 

  15. Y. Saraç, S.Ş Şener, A. Baltakesmez, B. Güzeldir, M. Sağlam, A comparative study on theoretical and experimental methods using basic electrical parameters of Au/CNTs/lnP/AueGe diodes. J. Alloys Compd. 824, 153899 (2020)

    Article  CAS  Google Scholar 

  16. Ö. Sevgili, On the examination of temperature-dependent possible current-conduction mechanisms of Au/(nanocarbon-PVP)/n-Si Schottky barrier diodes in wide range of voltage. J. Mater. Sci.: Mater. Electron. 32, 10112–10122 (2021)

    CAS  Google Scholar 

  17. M.A. Hernandez-Ochoa, H. Arizpe-Chavez, R. Ramirez-Bon, A. Perez-Rodriguez, M. Cortez-Valadez, M. Flores-Acosta, Current–voltage characterization of transparent ITO/ZnO:B/ZnO:(Al + In)/Ag Schottky diodes prepared with multilayer films by Sol-Gel deposition. J. Electron. Mater. 49(3), 1993–2002 (2020)

    Article  CAS  Google Scholar 

  18. A. Türüt, M. Cokun, F.M. Cokun, O. Polat, Z. Durmuş, M. Çağlar, H. Efeoğlu, The current-voltage characteristics of the ferroelectric p-YMnO3 thin film/bulk p-Si heterojunction over a broad measurement temperature range. J. Alloys Compd. 782, 566–575 (2019)

    Article  CAS  Google Scholar 

  19. S. Türkay, A. Tataroğlu, Complex dielectric permittivity, electric modulus and electrical conductivity analysis of Au/Si3N4/p-GaAs (MOS) capacitor. J. Mater. Sci.: Mater. Electron. 32, 11418–11425 (2021)

    Google Scholar 

  20. M. Zeb, M. Tahir, F. Muhammad, D.N. Khan, M.H. Sayyad, S.M. Said, F. Wahab, Perylene tetracarboxylic diimide: Characterization and its role in the electrical properties of an Ag/N-BuHHPDI/PEDOT:PSS/p-Si heterojunction device. J. Electron. Mater. 49(1), 395–401 (2020)

    Article  CAS  Google Scholar 

  21. M. Sağlam, B. Güzeldir, A. Türüt, D. Ekinci, Role of reduced graphene oxide-gold nanoparticle composites on Au/Au-RGO/p-Si/Al structure depending on sample temperature. J. Electron. Mater. 50, 4752–4761 (2021)

    Article  CAS  Google Scholar 

  22. F.D. Akgül, S. Eymur, Ü. Akın, Ö.F. Yüksel, H. Karadeniz, N. Tuğluoğlu, Investigation of Schottky emission and space charge limited current (SCLC) in Au/SnO2/n-Si Schottky diode with gamma-ray irradiation. J. Mater. Sci.: Mater. Electron. 32, 15857–15863 (2021)

    Google Scholar 

  23. A. Buyukbaş Ulusan, A. Tataroğlu, Ş Altındal, Y. Azizian-Kalandaragh, Photoresponse characteristics of Au/(CoFe2O4-PVP)/n-Si/Au (MPS) diode. J. Mater. Sci.: Mater. Electron. 32, 15732–15739 (2021)

    Google Scholar 

  24. O. Ongun, E. Taşcı, M. Emrullahoğlu, Ü. Akın, N. Tuğluoğlu, S. Eymur, Fabrication, illumination dependent electrical and photovoltaic properties of Au/BOD-Pyr/n-Si/In Schottky diode. J. Mater. Sci.: Mater. Electron. 32, 15707–15717 (2021)

    CAS  Google Scholar 

  25. W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, G. Chen, Preparation of graphene by exfoliation of graphite using wet ball milling. J. Mater. Chem. C 20(28), 5817 (2010)

    Article  CAS  Google Scholar 

  26. D.J. Finn, M. Lotya, G. Cunningham, R.J. Smith, D. McCloskey, J.F. Donegan et al., Inkjet deposition of liquid- exfoliated graphene and MoS2 nanosheets for printed device applications. J. Mater. Chem. C 2(5), 925–932 (2014)

    Article  CAS  Google Scholar 

  27. P. Sutter, Epitaxial graphene: How silicon leaves the scene. Nat. Mater. 8, 171–172 (2009)

    Article  CAS  Google Scholar 

  28. T.A. Pham, J.S. Kim, Y.T. Jeong, One-step reduction of graphene oxide with l-glutathione. Colloids Surf. A 384(1–3), 543–548 (2011)

    Article  CAS  Google Scholar 

  29. X. Li, C.W. Magnuson, A. Venugopal, R.M. Tromp, J.B. Hannon, E.M. Vogel, L. Colombo, R.S. Ruoff, Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 133(9), 2816–2819 (2011)

    Article  CAS  Google Scholar 

  30. Ö. Bayram, A study on 3D graphene synthesized directly on Glass/FTO substrates: its Raman mapping and optical properties. Ceram. Int. 45, 16829–16835 (2019)

    Article  CAS  Google Scholar 

  31. E. Oz Orhan, E. Efil, Ö. Bayram, N. Kaymak, H. Berberoğlu, O. Candemir, I. Pavlov, S.B. Ocak, 3D-graphene-laser patterned p-type silicon Schottky diode. Mater. Sci. Semicond. Process. 121, 105454 (2021)

    Article  CAS  Google Scholar 

  32. L. Zhu, Plasma enhanced chemical vapour deposition of silicon thin films: characterization of film growth at different frequencies and gas compositions utilizing plasma diagnostics, Thesis Doctor of Philosophy, University of Delaware, USA (2014)

  33. C. Temirci, B. Batı, M. Sağlam, A. Türüt, High-barrier height Sn/p-Si schottky diodes with interfacial layer by anodization process. Appl. Surf. Sci. 172, 1–7 (2001)

    Article  Google Scholar 

  34. M.H. Rashid, Microelectronic Circuits: Analysis and Design, 2nd edn. (Cengage Learning Inc, Stamford, 2011)

    Google Scholar 

  35. K. Konishi, K. Goto, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, M. Higashiwaki, 1-kV vertical Ga2O3 field-plated Schottky barrier diodes. Appl. Phys. Lett. 110, 103506 (2017)

    Article  CAS  Google Scholar 

  36. S.H. Jang, J.S. Jang, Electrical characteristics and carrier transport mechanism for Ti/p-GaN Schottky diodes. Electron. Mater. Lett. 9(2), 245–249 (2013)

    Article  CAS  Google Scholar 

  37. A. Karabulut, H. Efeoğlu, A. Türüt, Influence of Al2O3 barrier on the interfacial electronic structure of Au/Ti/n-GaAs structures. J. Semicond. 38, 054003 (2017)

    Article  CAS  Google Scholar 

  38. M.J. Choi, M.H. Kim, D.K. Choi, A transparent diode with high rectifying ratio using amorphous indium-gallium-zinc oxide/SiNx coupled junction. Appl. Phys. Lett. 107, 053501 (2015)

    Article  CAS  Google Scholar 

  39. M. Yıldırım, A. Kocyigit, A. Sarılmaz, F. Özel, The effect of the triangular and spherical shaped CuSbS2 structure on the electrical properties of Au/CuSbS2/p-Si photodiode. J. Mater. Sci.: Mater. Electron. 30, 332–339 (2019)

    Google Scholar 

  40. B. Roul, S. Mukundan, G. Chandan, L. Mohan, S.B. Krupanidhi, Barrier height inhomogeneity in electrical transport characteristics of InGaN/GaN hetero-structure interfaces. AIP Adv. 5, 037130 (2015)

    Article  CAS  Google Scholar 

  41. I. Orak, A. Koçyiğit, A. Türüt, The surface morphology properties and respond illumination impact of ZnO/n-Si photodiode by prepared atomic layer deposition technique. J. Alloys Compd. 691, 873–879 (2017)

    Article  CAS  Google Scholar 

  42. Ş Karataş, Effect of series resistance on the electrical characteristics and interface state energy distributions of Sn/p-Si (MS) Schottky diodes. Microelectron. Eng. 87, 1935–1940 (2010)

    Article  CAS  Google Scholar 

  43. M.A. Yıldırım, B. Güzeldir, A. Ateş, M. Sağlam, Temperature dependent current-voltage characteristics of the Zn/ZnO/n-Si/Au-Sb structure with ZnO interface layer grown on n-Si substrate by SILAR method. Microelectron. Eng. 88, 3075–3079 (2011)

    Article  CAS  Google Scholar 

  44. Z. Khurelbaatar, K.H. Shim, J. Cho, H. Hong, V.R. Reddy, C.J. Choi, Temperature dependent current-voltage and capacitance-voltage characteristics of an Au/n-type Si Schottky barrier diode modified using a PEDOT:PSS interlayer. Mater. Trans. 56(1), 10–16 (2015)

    Article  CAS  Google Scholar 

  45. J.M. Dhimmar, H.N. Desai, B.P. Modi, Analysis of the inhomogeneous barrier in In/p-Si Schottky contact and modified Richardson plot. J. Nano Electron. Phys. 8(2), 02006 (2016)

    Article  CAS  Google Scholar 

  46. S. Chand, J. Kumar, Current transport in Pd2Si/n-Si(100) Schottky barrier diodes at low temperatures. Appl. Phys. A 63, 171 (1996)

    Google Scholar 

  47. M. Ravinandan, P.K. Rao, V.R. Reddy, Temperature dependence of current-voltage (I-V) characteristics of Pt/Au Schottky contacts on n-type GaN. J. Optoelectron. Adv. Mater. 10(10), 2787–2792 (2008)

    CAS  Google Scholar 

  48. R.T. Tung, Electron transport at metal-semiconductor interfaces: general theory. Phys. Rev. B 45, 13509 (1992)

    Article  CAS  Google Scholar 

  49. H. Norde, A modified forward I-V plot for Schottky diodes with high series resistance. J. Appl. Phys. 50, 5052 (1979)

    Article  CAS  Google Scholar 

  50. K.E. Bohlin, Generalized Norde plot including determination of the ideality factor. J. Appl. Phys. 60, 1223 (1986)

    Article  Google Scholar 

  51. P. Chattopadhyay, A new technique for the determination of barrier height of Schottky barrier diodes. Solid State Electron. 38, 739 (1995)

    Article  CAS  Google Scholar 

  52. R.M. Cibils, R.H. Buitrago, forward I-V plot for nonideal Schottky diodes with high series resistance. J. Appl. Phys. 58, 1075 (1985)

    Article  CAS  Google Scholar 

  53. J.H. Werner, H.H. Güttler, Barrier inhomogeneities at Schottky contacts. J. Appl. Phys. 69, 1522–1533 (1991)

    Article  CAS  Google Scholar 

  54. E. Şenarslan, B. Güzeldir, M. Sağlam, Influence of anodic passivation on electrical characteristics of Al/p-Si/Al and Al/V2O5/p-Si/Al diodes. J. Mater. Sci.: Mater. Electron. 28, 7582–7592 (2017)

    Google Scholar 

  55. M. Hudait, S. Krupanidhi, Interface states density distribution in Au/n-GaAs Schottky diodes on n-Ge and n-GaAs substrates. Mater. Sci. Eng. B 87, 141–147 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ataturk University Scientific Research Management Office, under Project number: PRJ2016/160. The authors would like to thank Ataturk University Scientific Research Management Office for their support.

Funding

The authors did not receive support from any organization for the submitted work. The authors have no financial or proprietary interests in any material discussed in this article.

Author information

Authors and Affiliations

Authors

Contributions

O.Ö. and B.G. contributed to conceptualization, visualization, investigation, and methodology. M.S. contributed to conceptualization, visualization, investigation, methodology, and writing-review & editing.

Corresponding author

Correspondence to M. Sağlam.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özakın, O., Sağlam, M. & Güzeldir, B. Transfer of graphene thin film obtained by PECVD method to Au/p-Si rectifier junction as interfacial layer and analysis of its barrier characteristics depending on sample temperature. J Mater Sci: Mater Electron 33, 14627–14643 (2022). https://doi.org/10.1007/s10854-022-08382-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08382-8

Navigation