Skip to main content
Log in

Heterocycled triazole and azomethine substituted multifunctional graphene based hybrid ligands: color and sensor properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Reduced graphene oxide (rGO) was obtained from graphene oxide (GO) by hydrothermal method. In order to easily synthesize hybrid compounds (HB1 and HB2), the carboxyl groups on the surface of rGO were converted to acyl chloride with SOCl2 and rGO-COCl was obtained. To use in the synthesize of the hybrids, two new carboxylic acid substituted multifunctional imine compounds ({(E)-4-((2-hydroxy-4-((1-(p-tolyl)-1 H-1,2,3-triazol-4-yl)methoxy) benzylidene)amino)benzoic acid (5), (E)-4-((2-hydroxy-4-((1-(4-methoxyphenyl)-1 H-1,2,3-triazol-4-yl)methoxy)benzylidene)amino)benzoic acid (6)}) were obtained and characterized by the 1H and 13C(1H)NMR, FT-IR, MALDI-TOF-MS techniques. The hybrids were obtained from the reaction of the imine and rGO-Cl compounds and characterized by the FT-IR, UV–Vis, emission (PL), X-ray diffraction (XRD), SEM-EDX and TEM methods. The chemosensor properties of the hybrids were investigated towards some metal ions (Al3+, Ag+, Co2+, Cr3+, Cu2+, Fe3+, Hg2+, Mn2+, Ni2+, Zn2+, Cd2+, Pb2+). At the short wavelength light, HB1 showed a blue sensor against Ag+, Co2+, Cu2+, Fe3+, Ni2+ and Pb2+ ions, dark green against Al3+, Zn2+ and Cd2+ ions, and purple-colored sensors against Hg2+ ions. HB2 hybrid material exhibited sensor properties against Ag+, Cr3+, Cu2+, Fe3+, Zn2+ and Cd2+ ions. At the long wavelength light, HB1 and HB2 materials showed sensory properties against Ag+, Cr3+, Cu2+, Fe3+, Zn2+ and Cd2+ ions. The hybrid HB1 has selective chemosensing properties against Al3+ and Hg2+ ions at the short wavelength light. In addition, the 1931 CIE (x,y) chromaticity coordinates of the hybrids and imine compounds were investigated and the x, y values of the compounds were found to be close to the National Television Standard Committee (NTSC) standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available in the supplementary material of this article.

References

  1. S. Goenka, V. Sant, S. Sant, J. Controlled Release 173, 75 (2014)

    Article  CAS  Google Scholar 

  2. W. Gao, Graphene Oxide (Springer International Publishing, Cham, 2015), pp. 61–95

    Book  Google Scholar 

  3. V. Galstyan, E. Comini, I. Kholmanov, A. Ponzoni, V. Sberveglieri, N. Poli, G. Faglia, G. Sberveglieri, Beilstein J. Nanotechnol. 7, 1421 (2016)

    Article  CAS  Google Scholar 

  4. A.P. De Silva, T.S. Moody, G.D. Wright, Analyst 134, 2385 (2009)

    Article  Google Scholar 

  5. V. Bojinov, N. Georgiev, J. Univ. Chem. Technol. Metall. 46, 3 (2011)

    CAS  Google Scholar 

  6. H. Jiang, Small 7, 2413 (2011)

    CAS  Google Scholar 

  7. A.L. Berhanu, I. Gaurav, A.K. Mohiuddin, J.S. Malik, V. Aulakh, Kumar, K.H. Kim, TrAC - Trends in Analytical Chemistry 116, 74 (2019)

    Article  CAS  Google Scholar 

  8. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  CAS  Google Scholar 

  9. S.N. Alam, N. Sharma, L. Kumar, Graphene 06, 1 (2017)

    Article  CAS  Google Scholar 

  10. X. Mei, X. Meng, F. Wu, E. Physica, Low-Dimensional Syst. Nanostruct. 68, 81 (2015)

    Article  CAS  Google Scholar 

  11. A. Koohi, R. Rahimi, R. Zare-Dorabei, S. Zargari, Proc. Int. ECOC 1 (2014)

  12. S. Zhou, H. Liao, M. Liu, G. Feng, B. Fu, R. Li, M. Cheng, Y. Zhao, P. Gong, Bioorg. Med. Chem. 22, 6438 (2014)

    Article  CAS  Google Scholar 

  13. R. Kumar, J. Arora, A.K. Prasad, N. Islam, A.K. Verma, Med. Chem. Res. 22, 5624 (2013)

    Article  CAS  Google Scholar 

  14. A. Koohi, R. Rahimi, R. Zare-Dorabei, S. Zargari, in Proceedings of The 18th International Electronic Conference on Synthetic Organic Chemistry (MDPI, Basel, Switzerland, 2014), p. a017

  15. M. Bala Murali Krishna, N. Venkatramaiah, R. Venkatesan, D. Narayana Rao, J. Mater. Chem. 22, 3059 (2012)

    Article  CAS  Google Scholar 

  16. L. Shahriary, A.a. Athawale, Int. J. Renew. Energy Environ. Eng. 02, 58 (2014)

    Google Scholar 

  17. C. Wang, J. Zhou, L. Chu, RSC Adv. 5, 52466 (2015)

    Article  CAS  Google Scholar 

  18. S. Rayati, E. Khodaei, S. Shokoohi, M. Jafarian, B. Elmi, A. Wojtczak, Inorg. Chim. Acta 466, 520 (2017)

    Article  CAS  Google Scholar 

  19. S. Omidi, A. Kakanejadifard, F. Azarbani, J. Mol. Liq. 242, 812 (2017)

    Article  CAS  Google Scholar 

  20. H. Peng, L. Meng, L. Niu, Q. Lu, (2012)

  21. D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Nat. Nanotechnol. 3, 101 (2008)

    Article  CAS  Google Scholar 

  22. H.A.S. Tohamy, B. Anis, M.A. Youssef, A.E.M. Abdallah, M. El-Sakhawy, S. Kamel, Desalination Water Treat. 191, 250 (2020)

    Article  CAS  Google Scholar 

  23. M. Karabörk, B.A. Muhammed, M. Tümer, S. Uruş, Phosphorus, Sulfur and Silicon and the Related Elements 197, 133 (2022)

    Article  Google Scholar 

  24. S. Nasrazadani, S. Hassani, Modern Analytical Techniques in Failure Analysis of Aerospace, Chemical, and Oil and Gas Industries (Elsevier Ltd., 2016)

  25. L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, I. Bieloshapka, J. Electron Spectrosc. Relat. Phenom. 195, 145 (2014)

    Article  CAS  Google Scholar 

  26. S. Gurunathan, J.W. Han, J.H. Park, E. Kim, Y.J. Choi, D.N. Kwon, J.H. Kim, Int. J. Nanomed. 10, 6257 (2015)

    Article  CAS  Google Scholar 

  27. L. Han, C.M. Liu, S.L. Dong, C.X. Du, X.Y. Zhang, L.H. Li, Y. Wei, Biosens. Bioelectron. 87, 466 (2017)

    Article  CAS  Google Scholar 

  28. J. Jose, A.R. Rajamani, S. Anandaram, S.P. Jose, S.C. Peter, P.B. Sreeja, Appl Organomet Chem 33, 5 (2019)

    Google Scholar 

  29. T. Serodre, N.A.P. Oliveira, D.R. Miquita, M.P. Ferreira, A.P. Santos, V.G. Resende, C.A. Furtado, J. Braz. Chem. Soc. 30, 2488 (2019)

    CAS  Google Scholar 

  30. M. Bera, P. Chandravati, Gupta, P.K. Maji, J. Nanosci. Nanotechnol. 18, 902 (2017)

    Article  Google Scholar 

  31. V. Selvarani, M.A. Neelakantan, V. Silambarasan, D. Velmurugan, Acta Crystallogr. Sect. E: Struct. Rep. Online 69, o64 (2013)

    Article  CAS  Google Scholar 

  32. C. Zhu, S. Guo, Y. Fang, S. Dong, ACS Nano 4, 2429 (2010)

    Article  CAS  Google Scholar 

  33. D. Majumdar, N. Baugh, S.K. Bhattacharya, Colloids Surf., A 512, 158 (2017)

    Article  CAS  Google Scholar 

  34. S.K. Pradhan, B. Xiao, S. Mishra, A. Killam, A.K. Pradhan, Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

  35. P. Bansal, A.S. Panwar, D. Bahadur, Int. J. Mater. Mech. Manuf. 2, 18 (2014)

    CAS  Google Scholar 

  36. D. Wang, X. Zhang, J.W. Zha, J. Zhao, Z.M. Dang, G.H. Hu, Polymer 54, 1916 (2013)

    Article  CAS  Google Scholar 

  37. J. Yang, X. Zhao, X. Shan, H. Fan, L. Yang, Y. Zhang, X. Li, J. Alloys Compd. 556, 1 (2013)

    Article  CAS  Google Scholar 

  38. N.M.S. Hidayah, W.W. Liu, C.W. Lai, N.Z. Noriman, C.S. Khe, U. Hashim, H.C. Lee, AIP Conf. Proc. 1892, (2017)

  39. H. Kırpık, M. Kose, J.N. Ballı, Appl. Organomet. Chem. 34, 1 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to KSU, Scientific Research Projects Coordination Unit (BAP) (Project number: 2020/3-18D) for the support of this research.

Author information

Authors and Affiliations

Authors

Contributions

MB: conceptualization, methodology, software, writing, MT: supervision, SU: data curation.

Corresponding author

Correspondence to Mustafa Bal.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 47084.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bal, M., Tümer, M. & Uruş, S. Heterocycled triazole and azomethine substituted multifunctional graphene based hybrid ligands: color and sensor properties. J Mater Sci: Mater Electron 33, 14001–14020 (2022). https://doi.org/10.1007/s10854-022-08331-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08331-5

Navigation