Skip to main content
Log in

Enhanced visible-light photocatalytic activity of hydrogenated Fe3O4 nanooctahedrons with {111} polar facets in degradation of Basic Fuchsin and the photocatalytic mechanism

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Fe3O4 nanooctahedrons with exposed {111} crystallographic planes have been synthesized by employing Cl ion as a control agent of crystal facet. The Fe3O4 nanooctahedron exhibits higher photocatalytic activity in degradation of basic fuchsin (BF), compared with Fe3O4 commercial powder. And the photocatalytic activity is significantly improved by removing Cl ions and -OH groups at the (111) surface via hydrogenation. The exposed clean {111} crystal planes are evidenced to be the photocatalytic reactive crystal facets. Based on the atomic arrangement of Fe3O4 {111} crystallographic planes, we found the exposed {111} crystallographic planes are polar Fe-Fe3O4 (111) and O-Fe3O4 \((\overline{1}\overline{1}\overline{1})\) surfaces. And thus, we present a photocatalytic mechanism of the spontaneous electric field between polar Fe-Fe3O4 (111) and O-Fe3O4 \((\overline{1}\overline{1}\overline{1})\) planes driving photogenerated charge separation. The photoinduced redox reactions occur at the Fe-Fe3O4 (111) and O-Fe3O4 \((\overline{1}\overline{1}\overline{1})\)crystal planes, respectively. The good separation of photogenerated charges results in the excellent photocatalytic performance. The findings suggest that this charge separation model is a universal photocatalytic mechanism. This mechanism can deepen the comprehension of the crystal plane-dependent photocatalytic performances and contributes to the rational design and preparation of high-performance photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.C. Wang, G. Liu, L.Z. Wang, Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting. Chem. Rev. 119, 5192–5247 (2019)

    Article  CAS  Google Scholar 

  2. Y.K. Peng, S.C.E. Tsang, Facet-dependent photocatalysis of nanosize semiconductive metal oxides and progress of their characterization. Nano Today 18, 15–34 (2018)

    Article  CAS  Google Scholar 

  3. X. Gao, T. Zhang, An overview: facet-dependent metal oxide semiconductor gas sensors. Sens. Actuators B 277, 604–633 (2018)

    Article  CAS  Google Scholar 

  4. Z.Y. Zhou, N. Tian, J.T. Li, I. Broadwell, S.G. Sun, Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem. Soc. Rev. 40, 4167–4185 (2011)

    Article  CAS  Google Scholar 

  5. P.A. Mangrulkar, V. Polshettiwar, N.K. Labhsetwar, R.S. Varma, S.S. Rayalu, Nano-ferrites for water splitting: unprecedented high photocatalytic hydrogen production under visible light. Nanoscale 4, 5202–5209 (2012)

    Article  CAS  Google Scholar 

  6. G. Bate, Recording materials. Handbook of ferromagnetic materials, vol. 2 (North-Holland Publishing Company, Amsterdam, 1980), pp. 381–507

    Google Scholar 

  7. X. Li, S. Lu, Z.G. Xiong, Y. Hu, D. Ma, W. Lou, C. Peng, M.G. Shen, X.Y. Shi, Light-addressable nanoclusters of ultrasmall iron oxide nanoparticles for enhanced and dynamic magnetic resonance imaging of arthritis. Adv. Sci. 6, 1901800–1901809 (2019)

    Article  CAS  Google Scholar 

  8. P.J. Liu, Z.J. Yao, V.M.H. Ng, J. Zhou, L.B. Kong, K. Yue, Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance. Compos. A 115, 371–382 (2018)

    Article  CAS  Google Scholar 

  9. L.Y. Feng, M.H. Cao, X.Y. Ma, Y.S. Zhu, C.W. Hu, Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. J. Hazard. Mater. 217–218, 439–446 (2012)

    Article  Google Scholar 

  10. H. Li, J.Y. Liao, Z. Xibin, Facile synthesis of single crystal Fe3O4 sub-microcubes free of any capping agent and their catalytic performance in p-nitrophenol reduction. J. Mater. Chem. A 2, 17530–17535 (2014)

    Article  CAS  Google Scholar 

  11. S.M. Zhu, B.Z. Dong, Y.H. Yu, L.J. Bu, J. Deng, S.Q. Zhou, Heterogeneous catalysis of ozone using ordered mesoporous Fe3O4 for degradation of atrazine. Chem. Eng. J. 328, 527–535 (2017)

    Article  CAS  Google Scholar 

  12. S. Hou, S.Y. Jia, J.J. Jia, Z.G. He, G.R. Li, Q. Zuo, H.F. Zhuang, Fe3O4 nanoparticles loading on cow dung based activated carbon as an efficient catalyst for catalytic microbubble ozonation of biologically pretreated coal gasification wastewater. J. Environ. Manag. 267, 110615–110623 (2020)

    Article  CAS  Google Scholar 

  13. Q. Liu, X.X. Zhang, B. Zhang, Y.L. Luo, G.W. Cui, F.C. Xie, X.P. Sun, Ambient N2 fixation to NH3 electrocatalyzed by a spinel Fe3O4 nanorod. Nanoscale 10, 14386–14389 (2018)

    Article  CAS  Google Scholar 

  14. R.V. Solomon, I.S. Lydia, J.P. Merlin, P. Venuvanalingam, Enhanced photocatalytic degradation of azo dyes using nano Fe3O4. J. Iran. Chem. Soc. 9, 101–109 (2012)

    Article  CAS  Google Scholar 

  15. D. Bhuyan, S.S. Arbuj, L. Saikia, Template-free synthesis of Fe3O4 nanorod bundles and their highly efficient peroxidase mimetic activity for the degradation of organic dye pollutants with H2O2. New J. Chem. 39, 7759–7762 (2015)

    Article  CAS  Google Scholar 

  16. I.N. Reddy, A. Sreedhar, C.V. Reddy, J. Shim, M. Cho, D. Kim, J.S. Gwag, K. Yoo, Enhanced visible-light photocatalytic performance of Fe3O4 nanopyramids for water splitting and dye degradation. J. Solid State Electrochem. 22, 3535–3546 (2018)

    Article  CAS  Google Scholar 

  17. Z.H. Ai, K.J. Deng, Q.F. Wan, L.Z. Zhang, S.C. Lee, Facile microwave-assisted synthesis and magnetic and gas sensing properties of Fe3O4 nanoroses. J. Phys. Chem. C 114, 6237–6242 (2010)

    Article  CAS  Google Scholar 

  18. Y. Huang, Z.H. Xu, J.Q. Mai, T.K. Lau, X.H. Lu, Y.J. Hsu, Y.S. Chen, A.C. Lee, Y.L. Hou, Y.S. Meng, Q. Li, Revisiting the origin of cycling enhanced capacity of Fe3O4 based nanostructured electrode for lithium ion batteries. Nano Energy 41, 426–433 (2017)

    Article  CAS  Google Scholar 

  19. G.H. Li, R.C. Li, W.J. Zhou, A wire-shaped supercapacitor in micrometer size based on Fe3O4 nanosheet arrays on Fe wire. Nanomicro Lett. 9, 46–54 (2017)

    Google Scholar 

  20. W. Bessashia, Y. Berredjem, Z. Hattab, M. Bououdina, Removal of Basic Fuchsin from water by using mussel powdered eggshell membrane as novel bioadsorbent: Equilibrium, kinetics, and thermodynamic studies. Environ. Res. 186, 109484–109495 (2020)

    Article  CAS  Google Scholar 

  21. L.H. Huang, J.J. Kong, W.L. Wang, C.L. Zhang, S.F. Niu, B.Y. Gao, Study on Fe(III) and Mn(II) modified activated carbons derived from Zizania latifolia to removal basic fuchsin. Desalination 286, 268–276 (2012)

    Article  CAS  Google Scholar 

  22. B. Liu, L.C. Ning, H. Zhao, C.J. Zhang, H.Q. Yang, S.Z. Liu, Visible-light photocatalysis in Cu2Se nanowires with exposed 111 facets and charge separation between (111) and \((\overline{1}\overline{1}\overline{1})\) polar surfaces. Phys. Chem. Chem. Phys. 17, 13280–13289 (2015)

  23. B. Liu, H.Q. Yang, S.Z. Liu, Photogenerated charge separation between polar crystal facets under a spontaneous electric field. Adv. Opt. Mater. 9, 2001898–2001911 (2021)

    Article  CAS  Google Scholar 

  24. Y. Chen, H. Zhao, B. Liu, H.Q. Yang, Charge separation between wurtzite ZnO polar 001 surfaces and their enhanced photocatalytic activity. Appl. Catal. B 163, 189–197 (2015)

    Article  CAS  Google Scholar 

  25. Y. Chen, L.N. Zhang, L.C. Ning, C.J. Zhang, H. Zhao, B. Liu, H.Q. Yang, Superior photocatalytic activity of porous wurtzite ZnO nanosheets with exposed 001 facets and a charge separation model between polar (001) and surfaces. Chem. Eng. J. 264, 557–564 (2015)

    Article  CAS  Google Scholar 

  26. B. Liu, L. Ma, L.C. Ning, C.J. Zhang, G.P. Han, C.J. Pei, H. Zhao, S.Z. Liu, H.Q. Yang, Charge separation between polar 111 surfaces of CoO octahedrons and their enhanced visible-light photocatalytic activity. ACS Appl. Mater. Interfaces. 7, 6109–6117 (2015)

    Article  CAS  Google Scholar 

  27. J.F. Liu, B. Liu, Y. Ren, Y.K. Yuan, H. Zhao, H.Q. Yang, S.Z. Liu, Hydrogenated nanotubes/nanowires assembled from TiO2 nanoflakes with exposed 111 facets: excellent photo-catalytic CO2 reduction activity and charge separation mechanism between (111) and polar surfaces. J. Mater. Chem. A 7, 14761–14775 (2019)

    Article  CAS  Google Scholar 

  28. G.P. Han, W.N. Wang, B. Liu, C.J. Pei, H. Zhao, J.F. Liu, H.Q. Yang, Visible-light photocatalysis in CdTe nanoflakes with exposed 111 facets and charge separation between polar CdTe 111 surfaces. Appl. Catal. B 208, 94–103 (2017)

    Article  CAS  Google Scholar 

  29. B. Liu, L. Wang, Y. Ma, Y.K. Yuan, J. Yang, M.Z. Wang, J.F. Liu, X. Zhang, Y. Ren, Q. Du, H. Zhao, C.J. Pei, S.Z. Liu, H.Q. Yang, Enhanced gas–sensing properties and sensing mechanism of the foam structures assembled from NiO nanoflakes with exposed 1 1 1 facets. Appl. Surf. Sci. 470, 596–606 (2019)

    Article  CAS  Google Scholar 

  30. T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254, 2441–2449 (2008)

    Article  CAS  Google Scholar 

  31. X.F. Zhang, X.Y. Wang, L.J. Le, A. Ma, S. Lin, Electrochemical growth of octahedral Fe3O4 with high activity and stability toward the oxygen reduction reaction. J. Mater. Chem. A 3, 19273–19276 (2015)

    Article  CAS  Google Scholar 

  32. C. Yang, J.J. Wu, Y.L. Hou, Fe3O4 nanostructures: synthesis, growth mechanism, properties and applications. Chem. Commun. 47, 5130–5141 (2011)

    Article  CAS  Google Scholar 

  33. G.S. Parkinson, Z. Novotný, P. Jacobson, M. Schmid, U. Diebold, A metastable Fe(A) termination at the Fe3O4 (001) surface. Surf. Sci. 605, L42–L45 (2011)

    Article  CAS  Google Scholar 

  34. X.H. Yu, C.F. Huo, Y.W. Li, J.G. Wang, H.J. Jiao, Fe3O4 surface electronic structures and stability from GGA+ U. Surf. Sci. 606, 872–879 (2012)

    Article  CAS  Google Scholar 

  35. X.H. Yu, S.G. Wang, Y.W. Li, J.G. Wang, H.J. Jiao, Single gold atom adsorption on the Fe3O4 (111) surface. J. Phys. Chem. C 116, 10632–10638 (2012)

    Article  CAS  Google Scholar 

  36. Z.L. Wang, Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 104, 1153–1175 (2000)

    Article  CAS  Google Scholar 

  37. B. Liu, H.Q. Yang, A.H. Wei, H. Zhao, L.C. Ning, C.J. Zhang, S.Z. Liu, Superior photocatalytic activities of NiO octahedrons with loaded AgCl particles and charge separation between polar NiO 111 surfaces. Appl. Catal. B 172–173, 165–173 (2015)

    Article  Google Scholar 

  38. X.H. Feng, H.J. Guo, K. Patel, H. Zhou, X. Lou, High performance, recoverable Fe3O4-ZnO nanoparticles for enhanced photocatalytic degradation of phenol. Chem. Eng. J. 244, 327–334 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants. 52172148, 51872178 and 51702204), the Fundamental Research Funds for the Central Universities (No. GK202003046, No. 2020TS103), the 111 Project (B14041), DNL Cooperation Fund CAS (DNL180311), and the National Key Research Program of China (2016YFA0202403).

Author information

Authors and Affiliations

Authors

Contributions

HQY and XHM conceived the idea and designed the experiments. XHM, JYG, LZ, CQ, YLZ, and BL performed the experiments. XHM, HQY, and SZL wrote the manuscript. All authors provided critical comments and analyses.

Corresponding author

Correspondence to Heqing Yang.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Research data policy and data availability statements

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Guo, J., Zhang, L. et al. Enhanced visible-light photocatalytic activity of hydrogenated Fe3O4 nanooctahedrons with {111} polar facets in degradation of Basic Fuchsin and the photocatalytic mechanism. J Mater Sci: Mater Electron 33, 13095–13109 (2022). https://doi.org/10.1007/s10854-022-08249-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08249-y

Navigation