Skip to main content
Log in

Growth, defects, mechanical, and optical properties of transparent KTaO3 single crystal

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

KTaO3 (KT) is an important material for optoelectronic and tunable microwave applications. However, growing large size and uniform crystals still remain a challenge. In this paper, a promising approach for growing relatively large size and high-quality KT single crystal was explored, and a transparent KT single crystal with dimension of Ф 30 × 80 mm, weighing as much as 406 g, was grown by Czochralski method successfully. The full width at half maximums (FWHMs) of X-ray rocking curves (XRCs) are 0.016°, 0.011°, and 0.016°, respectively, implying that the KT crystal possesses high crystalline quality. A comprehensive investigation of its mechanical, thermal, and optical properties was carried out. The Mohr’s hardness is obtained to be 6.0, indicating that the KT is more conducive to being processed compared with diamond. The Sellmeier equation is fitted and the refractive index curve in the range of 400–3000 nm is displayed based on the measured refractive index. All results are of great significance for the further research and application of KT crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. H.J. Bae, J. Sigman, S.J. Park, Y.H. Heo, L.A. Boatner, D.P. Norton, Solid-State Electron. 48, 1 (2004)

    Article  CAS  Google Scholar 

  2. H.J. Bae, J. Sigman, D.P. Norton, L.A. Boatner, Appl. Surf. Sci. 241, 271 (2005)

    Article  CAS  Google Scholar 

  3. N. Wadehra, R. Tomar, R.M. Varma, R.K. Gopal, Y. Singh, S. Dattagupta, S. Chakraverty, Nat. Commun. 11, 874 (2020)

    Article  CAS  Google Scholar 

  4. A. Gupta, H. Silotia, A. Kumari, M. Dumen, S. Goyal, R. Tomar, N. Wadehra, P. Ayyub, S. Chakraverty, Adv. Mater. 34, 2106481 (2021)

    Article  CAS  Google Scholar 

  5. H. Nakamura, T. Kimura, Phys. Rev. B 80, 121308 (2009)

    Article  CAS  Google Scholar 

  6. N. Kumar, N. Wadehra, R. Tomar, S. Dattagupta, S. Kumar, S. Chakraverty, Adv. Quantum Technol. 4, 2000081 (2021)

    Article  CAS  Google Scholar 

  7. K. Szot, W. Speier, M. Pawelczyk, J. Kwapuli, J. Phys. : Condens. Matter 12, 4687 (2000)

    CAS  Google Scholar 

  8. C.K. Tan, G.K.L. Goh, W.L. Cheah, Thin Film Solid 515, 6577 (2007)

    Article  CAS  Google Scholar 

  9. V. Zelezny, J. Bursik, P. Vanek, J. Eur. Ceram. Soc. 25, 2155 (2005)

    Article  CAS  Google Scholar 

  10. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, M. Hassanpour, J. Mater. Sci: Mater. Electron. 27, 1244 (2016)

    CAS  Google Scholar 

  11. Y. He, Y. Zhu, N. Wu, J. Solid State Chem. 177, 2985 (2004)

    Article  CAS  Google Scholar 

  12. D.R. Modeshia, R.I. Walton, Chem. Soc. Rev. 39, 4303 (2010)

    Article  CAS  Google Scholar 

  13. T. Su, H. Jiang, H. Gong, J. Solid State Chem. 184, 2601 (2011)

    Article  CAS  Google Scholar 

  14. A. Tkach, P.M. Vilarinho, A. Almeida, J. Eur. Ceram. Soc. 31, 2303 (2011)

    Article  CAS  Google Scholar 

  15. H. Hayashi, Y. Hakuta, J. Mater. Sci. 43, 2342 (2008)

    Article  CAS  Google Scholar 

  16. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, J. Nanostruct. 6, 77 (2016)

    Google Scholar 

  17. S.R. Yousefi, M. Masjedi-Arani, M.S. Morassaei, M. Salavati-Niasari, H. Moayedi, Int. J. Hydrog Energy 44, 24005 (2019)

    Article  CAS  Google Scholar 

  18. M. Mann, S. Jackson, J. Kolis, J. Solid State Chem. 183, 2675 (2010)

    Article  CAS  Google Scholar 

  19. R. Feenstra, L.A. Boatner, J.D. Budai, D.K. Christen, M.D. Galloway, D.B. Poker, Appl. Phys. Lett. 54, 1063 (1989)

    Article  CAS  Google Scholar 

  20. A.F. Chow, D.J. Lichtenwalner, R.R. Woolcott, T.M. Graettinger, O. Auciello, A.I. Kingon, L.A. Boatner, N.R. Parikh, Appl. Phys. Lett. 65, 1073 (1994)

    Article  CAS  Google Scholar 

  21. W. Prusseit, L.A. Boatner, D. Rytz, Appl. Phys. Lett. 63, 3376 (1993)

    Article  CAS  Google Scholar 

  22. Q.J. Wang, G. Wu, T.A. Newhourse-Illige, A.W. Shepard, J.A. Greer, Z.Y. Gan, G. Feng, S. Liu, Diam. Relat. Mater. 110, 108117 (2020)

    Article  CAS  Google Scholar 

  23. Q. Wei, G. Niu, R.Z. Wang, G.Q. Chen, F. Lin, X.F. Zhang, Z.Y. Zhang, H.X. Wang, Appl. Phys. Lett. 119, 092104 (2021)

    Article  CAS  Google Scholar 

  24. V.V. Laguta, M.D. Glinchuk, I.P. Bykov, A. Cremona, P. Galinetto, E. Giulotto, L. Jastrabik, J. J. Rosa Appl. Phys. 93, 6056 (2003)

    Article  CAS  Google Scholar 

  25. K. Fujiura, M. Sasaura, NTT Tech. Rev. 5, 1 (2007)

    Google Scholar 

  26. R. Kibar, P.J.T. Nunn, P.D. Townsend, Y. Wang, L.A. Boatner, Phys. Status Solidi C 4, 905 (2007)

    Article  CAS  Google Scholar 

  27. T. Taishi, T. Takenaka, K. Hosokawa, N. Bamba, K. Hoshikawa, J. Cryst. Growth 380, 39 (2013)

    Article  CAS  Google Scholar 

  28. S. Zlotnik, P.M. Vilarinho, M.E.V. Costa, J.A. Moreira, A. Almeida, Cryst. Growth Des. 10, 3397 (2010)

    Article  CAS  Google Scholar 

  29. S.H. Wemple, Phys. Rev. 137, A1575 (1965)

    Article  Google Scholar 

  30. L. Cao, E. Sozontov, J. Zecenhagen, Phys. Status Solidi Appl. Res. 181, 387 (2000)

    Article  CAS  Google Scholar 

  31. S.J. Ding, Q.L. Zhang, J.Q. Luo, W.P. Liu, W.C. Lu, J.R. Xu, G.H. Sun, D.L. Sun, Appl. Phys. A 123, 636 (2017)

    Article  CAS  Google Scholar 

  32. H.L. Zhang, X.J. Sun, J.Q. Luo, Z.Q. Fang, X.Y. Zhao, M.J. Cheng, Q.L. Zhang, D.L. Sun, J. Alloy Compd. 672, 5 (2016)

    Article  CAS  Google Scholar 

  33. Z.Y. Han, D.L. Sun, H.L. Zhang, J.Q. Luo, C. Quan, L.Z. Hu, K.P. Dong, M.J. Cheng, G.Z. Chen, Y. Hang, Cryst. Res. Technol. 56, 2000221 (2021)

    Article  CAS  Google Scholar 

  34. G.D. Wu, M.D. Fan, F.P. Yu, S.Z. Fan, X.F. Cheng, Z.P. Wang, X. Zhao, Cryst. Growth Des. 20, 7963 (2020)

    Article  CAS  Google Scholar 

  35. K.P. Dong, D.L. Sun, H.L. Zhang, J.Q. Luo, X.Y. Zhao, C. Quan, L.Z. Hu, Z.Y. Han, Y.W. Chen, M.J. Cheng, S.T. Yin, Opt. Mater. 121, 111568 (2021)

    Article  CAS  Google Scholar 

  36. S.J. Ding, Q.L. Zhang, W.P. Liu, J.Q. Luo, G.H. Sun, D.L. Sun, J. Cryst. Growth 483, 110 (2018)

    Article  CAS  Google Scholar 

  37. X.P. Wang, J.Y. Wang, B. Liu, Adv. Mat. Res. 306, 352 (2011)

    Google Scholar 

  38. R. Punia, R.S. Kundu, J. Hooda, S. Dhankhar, S. Dahiya, N. Kishore, J. Appl. Phys. 110, 033527 (2011)

    Article  CAS  Google Scholar 

  39. Y.H. Elbashar, W.A. Rashidy, J.A. Khaliel, D.I. Moubarak, A.S. Abdel-Rahaman, H.H. Hassan, Nonlinear Opt. Quantum Opt. 51, 171 (2019)

    CAS  Google Scholar 

  40. Y.H. Elbashar, A.E. Omran, J.A. Khaliel, A.S. Abdel-Rahaman, H.H. Hassan, Nonlinear Opt. Quantum Opt. 49, 247 (2018)

    CAS  Google Scholar 

  41. G.E. Jellison Jr., I. Paulauskas, L.A. Boatner, D.J. Singh, Phys. Rev. B 74, 155130 (2006)

    Article  CAS  Google Scholar 

  42. A.K. Das, R. Hatada, W. Ensinger, S. Flege, K. Baba, A.K. Meikap, J. Alloys Compd. 758, 194 (2018)

    Article  CAS  Google Scholar 

  43. V.A. Trepakov, V.S. Vikhnin, P.P. Syrnikov, F. Smutny, M. Savinov, L. Jastrabik, Phys. Solid State 39, 11 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC) (grant No. 51872290 and 52102012), the Youth Fund of Advanced Laser Technology Laboratory of Anhui Province (Grant No. AHL2020QN02), and the Natural Science Foundation of Anhui Province (Grant No. 1908085QE176).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, funding acquisition, conceptualization, and supervision were performed by Maojie Cheng, Dunlu Sun, Jianqiao Luo, and Huili Zhang. Cong Quan, Zhiyuan Han, Kunpeng Dong, and Yuwei Chen performed the writing-review and editing, data collection, formal analysis, and investigation. The first draft of the manuscript was written by Lunzhen Hu and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Dunlu Sun.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Research involving human and animal participants

All the work in this manuscript does not involve animal and human experiments.

Consent for publication

All the co-authors have read and agreed that the manuscript is published in Journal of Materials Science: Materials in Electronics.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Sun, D., Zhang, H. et al. Growth, defects, mechanical, and optical properties of transparent KTaO3 single crystal. J Mater Sci: Mater Electron 33, 13051–13063 (2022). https://doi.org/10.1007/s10854-022-08246-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08246-1

Navigation