Skip to main content
Log in

Effect of Nd doping on the electrical transport properties of La0.67Ca0.33MnO3 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nd-doped La0.67Ca0.33MnO3 (La0.67-xNdxCa0.33MnO3) gel films were fabricated on Si (00l) and LaAlO3 (00l) substrates using sol–gel method and acetylacetone as chelating agent. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron (XPS) were used to characterize the structure, composition, and morphology of the films. The electrical transport properties were measured on a physical property measurement system (PPMS) under a relatively low external magnetic field (1 T). Results show that the La0.67-xNdxCa0.33MnO3 films present to be randomly oriented on Si (00l) substrate, but grow epitaxially on LaAlO3 (00l) substrate. Both the magnetoresistance effect and saturation magnetization of the La0.67-xNdxCa0.33MnO3 films are significantly enhanced by Nd doping, although the metal–insulator transition temperature (TIM) decreases. The electrical transport properties of films deposited on Si (00l) and LaAlO3 (00l) substrate are almost same, viz. increases firstly and then decreases with the increase of Nd doping content. When the Nd doping content x = 0.35, the magnetoresistance change rate reaches the maximum value, which is 24.8% and 86.9% of that of the film deposited on Si (00l) and LaAlO3 (00l) substrate, respectively. However, the saturation magnetization reaches the highest level at the Nd content x = 0.15, viz. 520 and 1058 emu/cm3 at 50 K for the films deposited on Si (00 l) and LaAlO3 (00 l) substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article, and we promise that all the original data can be opened if it is necessary and requested.

References

  1. S. Jin, T.H. Tiefel, M. Mccormack et al., Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films[J]. Science 264(5157), 413–415 (1994)

    Article  CAS  Google Scholar 

  2. J. Gao, F.X. Hu, H. Yao, Impact of electric currents on the insulator–metal phase transition in epitaxial thin films of La1xAxMnO3 (A = Sr, Ca, and Ba)[J]. Appl. Surf. Sci. 252, 5521–5524 (2006)

    Article  CAS  Google Scholar 

  3. L. Wu, J. Ma, J. Ma et al., Exchange coupling-induced uniaxial anisotropy in La0.7Sr0.3MnO3 thin films[J]. Sci Bull 61, 157–162 (2016)

    Article  CAS  Google Scholar 

  4. J. Hu, H. Qin, Magnetoimpedance effect La0.7Sr0.3MnO3[J]. J Magn Magn Mater 234, 419–422 (2001)

    Article  CAS  Google Scholar 

  5. H. Mo, H. Nan, X. Lang et al., Influence of calcium doping on performance of LaMnO3 supercapacitors[J]. Ceram. Int. 44(8), 9733–9741 (2018)

    Article  CAS  Google Scholar 

  6. R. Von Helmolt, J. Wecker, B. Holzapfel et al., Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films[J]. Phys. Rev. Lett. 71(14), 2331–2333 (1993)

    Article  Google Scholar 

  7. A.B. Beznosov, V.A. Desnenko, E.L. Fertman et al., Uniaxial pressure effect on magnetic susceptibility of perovskite manganite La0.66Ba0.34MnO3[J]. J Magn Magn Mater 241(1), 69–72 (2002)

    Article  CAS  Google Scholar 

  8. A.M. Haghiri-Gosnet, J.P. Renard, CMR manganites: Physics, thin films and devices[J]. J. Phys. D Appl. Phys. 36(8), R127 (2003)

    Article  CAS  Google Scholar 

  9. Y. Tokura, Y. Tomioka, Colossal magnetoresistive manganites[J]. J. Magn. Magn. Mater. 200, 1–23 (1999)

    Article  CAS  Google Scholar 

  10. J.B. Goodenough, Colossal magnetoresistance in Ln1xAxMnO3 perovskites[J]. Aust. J. Phys. 52(2), 155–186 (1999)

    Article  CAS  Google Scholar 

  11. A. Venimadhav, M.S. Hegde, R. Rawat et al., Enhancement of magnetoresistance in La0.67Ca0.33MnO3/Pr0.7Ca0.3MnO3 epitaxial multilayers[J]. J Alloys Compounds 326, 270–274 (2001)

    Article  CAS  Google Scholar 

  12. K. Dörr, K.H. Müller, N. Kozlova et al., Field dependence of colossal magnetoresistance in magnetic fields up to 50T[J]. J. Magn. Magn. Mater. 290–291, 416–419 (2005)

    Article  CAS  Google Scholar 

  13. J.M. De Teresa, M.R. Ibarra, P.A. Algarabel et al., Evidence for magnetic polarons in the magnetoresistive perovskites[J]. Nature 386, 256–259 (1997)

    Article  Google Scholar 

  14. X.W. Li, A. Gupta, G. Xiao et al., Low-field magnetoresistive properties of polycrystalline and epitaxial perovskite manganite films[J]. Appl Phys Lett 71(8), 1124–1126 (1997)

    Article  CAS  Google Scholar 

  15. P. Schiffe, A.P. Ramirez, W. Bao et al., Low temperature magnetoresistance and the magnetic phase diagram of La1−xCaxMnO3[J]. Phys Rev Lett 75, 3336–3339 (1995)

    Article  Google Scholar 

  16. L. Balcells, A.E. Carrillo, B. Martinez et al., Enhanced field sensitivity close to percolation in magnetoresistive La2/3Sr1/3MnO3/CeO2 composites[J]. Appl. Phys. Lett. 74(26), 4014–4016 (1999)

    Article  CAS  Google Scholar 

  17. R. Chihoub, A. Amira, N. Mahamdioua et al., Magnetoresistive properties of cerium doped La0.7Ca0.3MnO3 manganites[J]. Physica B 492, 11–15 (2016)

    Article  CAS  Google Scholar 

  18. D. Cao, Y. Zhang, W. Dong et al., Structure, magnetic and transport properties of La0.7Ca0.3−xSrxMnO3 thin films by sol-gel method[J]. Ceramics International 41, S381–S386 (2015)

    Article  CAS  Google Scholar 

  19. Y.L. Li, H. Zhang, Q.M. Chen et al., Effects of A-site cationic radius and cationic disorder on the electromagnetic properties of La0.7Ca0.3MnO3 ceramic with added Sr, Pb, and Ba[J]. Ceram Int 44, 5378–5384 (2018)

    Article  CAS  Google Scholar 

  20. N.T. Dang, D.P. Kozlenko, G. Kim et al., Enhanced magnetocaloric effect in Eu-doped La0:7Ca0:3MnO3 compounds[J]. Curr Appl Phys 20, 794–801 (2020)

    Article  Google Scholar 

  21. C.Y. Wang, Y.L. Li, P. Sun et al., Electrical transport properties of Sm-doped La0.7Ca0.3MnO3 polycrystalline ceramics[J]. Ceram Int 47(18), 25281–25286 (2021)

    Article  CAS  Google Scholar 

  22. C.A. Taboada-Moreno, F. Sánchez-De Jesús, F. Pedro-García et al., Large magnetocaloric effect near to room temperature in Sr doped La0.7Ca0.3MnO3[J]. J Magn Magn Mater 496, 165887 (2020)

    Article  CAS  Google Scholar 

  23. M. Yuan, J. Zhang, S. Yan et al., Effect of Nd2O3 addition on the surface phase of TiO2 and photocatalytic activity studied by UV Raman spectroscopy[J]. J. Alloy. Compd. 509(21), 6227–6235 (2011)

    Article  CAS  Google Scholar 

  24. C.S. Kim, Y.R. Uhm, S.B. Kim et al., Magnetic properties of Y3xLaxFe5O12 thin films grown by a sol-gel method[J]. J. Magn. Magn. Mater. 215, 551–553 (2000)

    Article  Google Scholar 

  25. T.C. Mao, J.C. Chen, Influence of the addition of CeO2 on the microstructure and the magnetic properties of yttrium iron garnet ceramic[J]. J. Magn. Magn. Mater. 302(1), 74–81 (2006)

    Article  CAS  Google Scholar 

  26. A.J. Millis, B.I. Schraiman, R. Mueller, Dynamic Jahn-Teller effect and colossal magnetoresistance in La1−xSrxMnO3[J]. Phys. Rev. Lett. 77, 175–178 (1996)

    Article  CAS  Google Scholar 

  27. D.I. Golosov, M.R. Norman, K. Levin, Some aspects of the theory of magnets with competing double exchange and superexchange interactions[J]. Phys. Rev. B 58, 8617–8626 (1998)

    Article  CAS  Google Scholar 

  28. E. Dagotto, T. Hotta, A. Moreo, Colossal magnetoresistant materials: the key role of phase separation[J]. Phys. Rep. 344, 1–153 (2001)

    Article  CAS  Google Scholar 

  29. J.B. Goodenough, J.S. Zhou, New forms of phase segregation[J]. Nature 383, 229–230 (1997)

    Article  Google Scholar 

  30. X.W. Cao, J. Fang, K.B. Li, Electrical transport properties in magnetoresistive La0.67Ca0.33MnO3 thin film[J]. Solid State Commun 115, 201–205 (2000)

    Article  CAS  Google Scholar 

  31. H.Y. Hwang, S.W. Cheong, P.G. Radaelli et al., Lattice effects on the magnetoresistance in doped LaMnO3[J]. Phys. Rev. Lett. 75, 914–917 (1995)

    Article  CAS  Google Scholar 

  32. L. Zhu, L. Li, T. Cheng et al., Density-functional studies of electronic and magnetic structures for the perovskite oxides La2/3-yNdySr1/3MnO3[J]. J. Magn. Magn. Mater. 320, 2608–2612 (2008)

    Article  CAS  Google Scholar 

  33. A. Kumar, K. Kumari, S. Minji et al., Excellent cooling power in chemically compressed double layer Ruddlesden-Popper ceramics La1.4Sr1.6Mn2O7 (0.0 ≤ × ≤ 0.15) [J]. Ceram Int 48, 4626–4636 (2022)

    Article  CAS  Google Scholar 

  34. A. Abassi, N. Kallel, S. Kallel et al., Electrical conductivity and complex impedance analysis of La0.7−xNdxSr0.3Mn0.7Ti0.3O3 (x≤0.30) perovskite[J]. J Magn Magn Mater 401, 853–859 (2016)

    Article  CAS  Google Scholar 

  35. G. Li, Z. Xianyu, C.O. Kim et al., Spin freezing phenomenon and transport properties in La1/3Nd1/3Ba1/3MnO3[J]. J. Magn. Magn. Mater. 239, 51–53 (2002)

    Article  CAS  Google Scholar 

  36. R.D. Shannon, C.T. Prewitt, Effective ionic radii in oxides and fluorides[J]. Acta Crystallogr. B 25, 925–946 (1969)

    Article  CAS  Google Scholar 

  37. W.R. Xia, K. Leng, Q.K. Tang et al., Structural characterization, magnetic and optical properties of perovskite (La1−xLnx)0.67Ca0.33MnO3 (Ln=Nd and Sm; x=0.0–0.5) nanoparticles synthesized via the sol-gel process[J]. J Alloys Compounds 867, 158808 (2021)

    Article  CAS  Google Scholar 

  38. A. Pal, B.S. Nagaraja, K.J. Rachana et al., Enhancement of temperature coefficient of resistance (TCR) and magnetoresistance (MR) of La0.67–xRExCa0.33MnO3(x=0, 0.1; RE=Gd, Nd, Sm) system via rare-earth substitution[J]. Mater Res Expr 7, 036102 (2020)

    Article  CAS  Google Scholar 

  39. F.X. Yan, K. Han, G.Y. Zhao et al., Growth and magnetoelectric properties properties of (00l)-oriented La0.67Sr0.33MnO3/PbZr0.52Ti0.48O3 heterostructure films[J]. Mater Character 124, 90–96 (2017)

    Article  CAS  Google Scholar 

  40. W. Xia, Z. Pei, K. Leng et al., Research progress in rare earth-doped perovskite manganite oxide nanostructures[J]. Nanoscale Res. Lett. 15(1), 1–55 (2020)

    Article  CAS  Google Scholar 

  41. D.K. Mishra, S. Dash, S. Samantray, et al. X-Ray photoelectron spectra of La0.67Ca0.33MnO3 processed by EATPAH technique[C]. AIP Conf Proc, 222–229 (2008).

  42. S. Karimunnesa, B. Ahmmad, M.A. Basith, Effect of strontium substitution on the structural and magnetic properties of La1.8Sr0.2MMnO6(M=Ni, Co)-layered manganites[J]. Phase Transitions 90(7), 677–686 (2016)

    Article  CAS  Google Scholar 

  43. F.X. Yan, T.J. Jiao, Z.C. Jiao et al., Fabrication and characterization of micropatterned La0.67Ca0.33MnO3 films via the UV assisted photosensitive solution deposition method[J]. J Sol-Gel Sci Technol 93(3), 678–686 (2020)

    Article  CAS  Google Scholar 

  44. N. Kumar, H. Kishan, A. Rao et al., Fe ion doping effect on electrical and magnetic properties of La0.7Ca0.3Mn1-xFexO3(0≤x≤1)[J]. J Alloys Compounds 502(2), 283–288 (2010)

    Article  CAS  Google Scholar 

  45. P. Pal, A.K. Giri, S. Mahanty et al., Morphology-mediated tailoring of the performance of porous nanostructured Mn2O3 as an anode material[J]. CrystEngComm 16(46), 10560–10568 (2014)

    Article  CAS  Google Scholar 

  46. Y.X. Han, C.F. Zhu, Annealing effect on the structure and electronic transport properties in La5/8Ca3/8MnO3/ErMnO3 multilayer thin films[J]. J Nanosci Nanotechnol 12(2), 1049–1053 (2012)

    Article  CAS  Google Scholar 

  47. J. Rivas, L.E. Hueso, A. Fondado et al., Low field magnetoresistance effects in fine particles of La0.67Ca0.33MnO3 perovskites[J]. J Magn Magn Mater 221, 57–62 (2000)

    Article  CAS  Google Scholar 

  48. W.G. Wei, H. Wang, K. Zhang et al., Large tunability of physical properties of manganite thin films by epitaxial strain[J]. Chin. Phys. Lett. 32(8), 165–168 (2015)

    Google Scholar 

  49. G. Campillo, A. Berger, J. Osorio et al., Substrate dependence of magnetic properties of La0.67Ca0.33MnO3 films[J]. J Magn Magn Mater 237, 61–68 (2001)

    Article  CAS  Google Scholar 

  50. L.E. Hueso, J. Rivas, F. Rivadulla et al., Tuning of colossal magnetoresistance via grain size change in La0.67Ca0.33MnO3[J]. J Appl Phys 86(7), 3881–3884 (1999)

    Article  CAS  Google Scholar 

  51. H. Hwang, S.W. Cheong, N.P. Ong et al., Spin-polarized intergrain tunneling in La2/3Sr1/3 MnO3[J]. Phys. Rev. Lett. 77(10), 2041–2044 (1996)

    Article  CAS  Google Scholar 

  52. C. Jing, Y. Yang, X. Wang et al., Epitaxial growth of single-crystalline Ni46Co4Mn37In13 thin film and investigation of its magnetoresistance[J]. Progr Nat Sci: Mater Inter 24(1), 19–23 (2014)

    Article  CAS  Google Scholar 

  53. S. Angappane, P. Murugaraj, K. Sethupathi et al., Electrical and magnetoresistivity studies in chemical solution deposited La(1–x)CaxMnO3 thin films[J]. J. Appl. Phys. 89, 6979–6981 (2001)

    Article  CAS  Google Scholar 

  54. M. Zarifi, P. Kameli, M.H. Ehsani et al., Effects of strain on the magnetic and transport properties of the epitaxial La0.5Ca0.5MnO3 thin films[J]. J Magn Magn Mater 420, 33–38 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 51672212).

Author information

Authors and Affiliations

Authors

Contributions

FY analyzed the experimental data and wrote the manuscript draft. TW performed the experimental works. TJ performed the experimental works. ZJ contributed to XRD characterization. XH measured magnetoresistance data. JB contributed to XPS and SEM characterization. GZ contributed to writing, reviewing, and editing of the manuscript and funding acquisition.

Corresponding author

Correspondence to Fuxue Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, F., Wang, T., Jiao, T. et al. Effect of Nd doping on the electrical transport properties of La0.67Ca0.33MnO3 thin films. J Mater Sci: Mater Electron 33, 12310–12320 (2022). https://doi.org/10.1007/s10854-022-08189-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08189-7

Navigation