Skip to main content
Log in

Study the electron field emission properties of silver nanoparticles decorated carbon nanotubes-based cold-cathode field emitters via post-plasma treatment

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) are the promising candidate for performing the remarkable electron field emission due to owing the advanced electrical and structural properties. In this current work, we have proposed the post-plasma treatment of as-synthesized and silver nanoparticles (Ag NPs) attached CNT field emitters. We have studied the electron field emission properties of CNT field emitters such as the turn-on \(({E}_{\text{to}})\) and threshold \(({E}_{\text{th}})\) fields drastically reduced after attachment and plasma treatment process. The emission current density \((J)\) have also increased and have exhibited the better temporal stability for 2800 min for the plasma-treated Ag NPs attached CNT field emitter. The calculated scaled barrier field value \(({f}^\text{extr})\) belongs in the acceptable range and qualifies the orthodox hypothesis test as well. Plasma treated Ag NPs coated CNT field emitter could be a promising candidate for the cold-cathode electron field emission application in vacuum devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nat. 363, 603–605 (1993). https://doi.org/10.1038/363603a0

    Article  CAS  Google Scholar 

  2. M.S. Dresselhaus, G. Dresselhaus, J.C. Charlier, E. Hernández, Electronic, thermal and mechanical properties of carbon nanotubes. Philos. Trans. R. Soc. London. Ser. A 362, 2065–2098 (2004). https://doi.org/10.1098/rsta.2004.1430

    Article  CAS  Google Scholar 

  3. H. Dai, E.W. Wong, C.M. Lieber, Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science 272, 523–526 (1996). https://doi.org/10.1126/science.272.5261.523

    Article  CAS  Google Scholar 

  4. M. Bockrath, D.H. Cobden, P.L. McEuen, N.G. Chopra, A. Zettl, A. Thess, R.E. Smalley, Single-electron transport in ropes of carbon nanotubes. Science 275, 1922–1925 (1997). https://doi.org/10.1126/science.275.5308.1922

    Article  CAS  Google Scholar 

  5. J. Hone, M. Whitney, A. Zettl, Thermal conductivity of single-walled carbon nanotubes. Synth. Met. 103, 2498–2499 (1999). https://doi.org/10.1016/s0379-6779(98)01070-4

    Article  CAS  Google Scholar 

  6. M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000). https://doi.org/10.1126/science.287.5453.637

    Article  CAS  Google Scholar 

  7. S. Sridhar, L. Ge, C.S. Tiwary, A.C. Hart, S. Ozden, K. Kalaga, S. Lei, S.V. Sridhar, R.K. Sinha, H. Harsh, K. Kordas, P.M. Ajayan, R. Vajtai, Enhanced field emission properties from CNT arrays synthesized on inconel superalloy. ACS Appl. Mater. Interfaces. 6, 1986–1991 (2014). https://doi.org/10.1021/am405026y

    Article  CAS  Google Scholar 

  8. W.B. Choi, D.S. Chung, J.H. Kang, H.Y. Kim, Y.W. Jin, I.T. Han, Y.H. Lee, J.E. Jung, N.S. Lee, G.S. Park, J.M. Kim, Fully sealed, high-brightness carbon-nanotube field-emission display. Appl. Phys. Lett. 75, 3129 (1999). https://doi.org/10.1063/1.125253

    Article  CAS  Google Scholar 

  9. W.A. De Heer, A. Châtelain, D. Ugarte, A carbon nanotube field-emission electron source. Science 270, 1179–1180 (1995). https://doi.org/10.1126/science.270.5239.1179

    Article  Google Scholar 

  10. F. Giubileo, A. Di Bartolomeo, L. Iemmo, G. Luongo, F. Urban, Field emission from carbon nanostructures. Appl. Sci. 8, 526 (2018). https://doi.org/10.3390/app8040526

    Article  CAS  Google Scholar 

  11. J.M. Bonard, H. Kind, T. Stöckli, L.O. Nilsson, Field emission from carbon nanotubes: the first five years. Solid. State. Electron. 45, 893–914 (2001). https://doi.org/10.1016/s0038-1101(00)00213-6

    Article  CAS  Google Scholar 

  12. J.M. Bonard, M. Croci, C. Klinke, R. Kurt, O. Noury, N. Weiss, Carbon nanotube films as electron field emitters. Carbon 40, 1715–1728 (2002)

    Article  CAS  Google Scholar 

  13. Y. Chen, D.T. Shaw, X.D. Bai, E.G. Wang, C. Lund, W.M. Lu, D.D.L. Chung, Hydrogen storage in aligned carbon nanotubes. Appl. Phys. Lett. 78, 2128 (2001). https://doi.org/10.1063/1.1341224

    Article  CAS  Google Scholar 

  14. X. Jian, S. Liu, Y. Gao, W. Tian, Z. Jiang, X. Xiao, H. Tang, L. Yin, Carbon-based electrode materials for supercapacitor: progress, challenges and prospective solutions. J. Electron. Eng. (2016). https://doi.org/10.17265/2328-2223/2016.02.004

    Article  Google Scholar 

  15. R. Chau, B. Doyle, S. Datta, J. Kavalieros, K. Zhang, Integrated nanoelectronics for the future. Nat. Mater. 611(6), 810–812 (2007). https://doi.org/10.1038/nmat2014

    Article  CAS  Google Scholar 

  16. N. Ansari, M.Y. Lone, X.X.X. Shumaila, J. Ali, M. Zulfequar, M. Husain, S.S. Islam, S. Husain, Trace level toxic ammonia gas sensing of single-walled carbon nanotubes wrapped polyaniline nanofibers. J. Appl. Phys. 127, 044902 (2020). https://doi.org/10.1063/1.5113847

    Article  CAS  Google Scholar 

  17. M.Y. Lone, A. Kumar, S. Husain, R.C. Singh, M. Zulfequar, M. Husain, Fabrication of sensitive SWCNT sensor for trace level detection of reducing and oxidizing gases (NH3 and NO2) at room temperature. Phys. E Low-Dimensional Syst. Nanostruct. 108, 206–214 (2019). https://doi.org/10.1016/j.physe.2018.11.020

    Article  CAS  Google Scholar 

  18. W. Lei, Z. Zhu, C. Liu, X. Zhang, B. Wang, A. Nathan, High-current field-emission of carbon nanotubes and its application as a fast-imaging X-ray source. Carbon 94, 687–693 (2015). https://doi.org/10.1016/j.carbon.2015.07.044

    Article  CAS  Google Scholar 

  19. J.W. Jeong, J.W. Kim, J.T. Kang, S. Choi, S. Ahn, Y.H. Song, A vacuum-sealed compact x-ray tube based on focused carbon nanotube field-emission electrons. Nanotechnology 24, 085201 (2013). https://doi.org/10.1088/0957-4484/24/8/085201

    Article  CAS  Google Scholar 

  20. H.S. Kim, E.J.D. Castro, C.H. Lee, Optimum design for the carbon nanotube based micro-focus X-ray tube. Vacuum 111, 142–149 (2015). https://doi.org/10.1016/j.vacuum.2014.10.009

    Article  CAS  Google Scholar 

  21. R.H. Baughman, A.A. Zakhidov, W.A. De Heer, Carbon nanotubes—the route toward applications. Science 297, 787–792 (2002). https://doi.org/10.1126/science.1060928

    Article  CAS  Google Scholar 

  22. W.I. Milne, K.B.K. Teo, E. Minoux, O. Groening, L. Gangloff, L. Hudanski, J.-P. Schnell, D. Dieumegard, F. Peauger, I.Y.Y. Bu, M.S. Bell, P. Legagneux, G. Hasko, G.A.J. Amaratunga, Aligned carbon nanotubes/fibers for applications in vacuum microwave amplifiers. J. Vac. Sci. Technol. B 24, 345 (2006). https://doi.org/10.1116/1.2161223

    Article  CAS  Google Scholar 

  23. X. Chen, T. Jiang, Z. Sun, W. Ou-Yang, Field emission device driven by self-powered contact-electrification: simulation and experimental analysis. Appl. Phys. Lett. 107, 114103 (2015). https://doi.org/10.1063/1.4931463

    Article  CAS  Google Scholar 

  24. J. Xu, P. Xu, P. Guo, W. Ou-Yang, Y. Chen, T. Feng, X. Piao, M. Wang, Z. Sun, All carbon nanotube based flexible field emission devices prepared through a film transfer method. RSC Adv. 5, 21755–21761 (2015). https://doi.org/10.1039/c4ra16095a

    Article  CAS  Google Scholar 

  25. S. Parveen, A. Kumar, S. Husain, M. Zulfequar, M. Husain, Synthesis of highly dense and vertically aligned array of SWCNTs using a catalyst barrier layer: high performance field emitters for devices. Phys. B Condens. Matter. 550, 15–20 (2018). https://doi.org/10.1016/j.physb.2018.08.016

    Article  CAS  Google Scholar 

  26. Y. Saito, S. Uemura, Field emission from carbon nanotubes and its application to electron sources. Carbon 38, 169–182 (2000). https://doi.org/10.1016/s0008-6223(99)00139-6

    Article  CAS  Google Scholar 

  27. K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, G. Pirio, P. Legagneux, F. Wyczisk, D. Pribat, D.G. Hasko, Field emission from dense, sparse, and patterned arrays of carbon nanofibers. Appl. Phys. Lett. 80, 2011 (2002). https://doi.org/10.1063/1.1461868

    Article  CAS  Google Scholar 

  28. A.V. Melechko, V.I. Merkulov, T.E. McKnight, M.A. Guillorn, K.L. Klein, D.H. Lowndes, M.L. Simpson, Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J. Appl. Phys. 97, 041301 (2005). https://doi.org/10.1063/1.1857591

    Article  CAS  Google Scholar 

  29. P.H. Lin, C.L. Sie, C.A. Chen, H.C. Chang, Y.T. Shih, H.Y. Chang, W.J. Su, K.Y. Lee, Field emission characteristics of the structure of vertically aligned carbon nanotube bundles. Nanoscale Res. Lett. 10, 1–6 (2015). https://doi.org/10.1186/s11671-015-1005-1

    Article  CAS  Google Scholar 

  30. V. Semet, V.T. Binh, P. Vincent, D. Guillot, K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, P. Legagneux, D. Pribat, Field electron emission from individual carbon nanotubes of a vertically aligned array. Appl. Phys. Lett. 81, 343 (2002). https://doi.org/10.1063/1.1489084

    Article  CAS  Google Scholar 

  31. A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tománek, P. Nordlander, D.T. Colbert, R.E. Smalley, Unraveling nanotubes: field emission from an atomic wire. Science 269, 1550–1553 (1995). https://doi.org/10.1126/science.269.5230.1550

    Article  CAS  Google Scholar 

  32. L. Janssen, M. Saranya, M. Leinonen, O. Pitkänen, A. Mobasheri, G.S. Lorite, Vertically aligned carbon nanotube micropillars induce unidirectional chondrocyte orientation. Carbon 158, 681–689 (2020). https://doi.org/10.1016/j.carbon.2019.11.040

    Article  CAS  Google Scholar 

  33. B.K. Gupta, G. Kedawat, A.K. Gangwar, K. Nagpal, P.K. Kashyap, S. Srivastava, S. Singh, P. Kumar, S.R. Suryawanshi, D.M. Seo, P. Tripathi, M.A. More, O.N. Srivastava, M.G. Hahm, D.J. Late, High-performance field emission device utilizing vertically aligned carbon nanotubes-based pillar architectures. AIP Adv. 8, 015117 (2018). https://doi.org/10.1063/1.5004769

    Article  CAS  Google Scholar 

  34. E. Fleming, F. Du, E. Ou, L. Dai, L. Shi, Thermal conductivity of carbon nanotubes grown by catalyst-free chemical vapor deposition in nanopores. Carbon 145, 195–200 (2019). https://doi.org/10.1016/j.carbon.2019.01.023

    Article  CAS  Google Scholar 

  35. A. Thapa, K.L. Jungjohann, X. Wang, W. Li, Improving field emission properties of vertically aligned carbon nanotube arrays through a structure modification. J. Mater. Sci. 55, 2101–2117 (2020). https://doi.org/10.1007/s10853-019-04156-6

    Article  CAS  Google Scholar 

  36. A. Thapa, J. Guo, K.L. Jungjohann, X. Wang, W. Li, Density control of vertically aligned carbon nanotubes and its effect on field emission properties. Mater. Today Commun. 22, 100761 (2020). https://doi.org/10.1016/j.mtcomm.2019.100761

    Article  CAS  Google Scholar 

  37. J.L. Silan, D.L. Niemann, B.P. Ribaya, M. Rahman, M. Meyyappan, C.V. Nguyen, Carbon nanotube pillar arrays for achieving high emission current densities. Appl. Phys. Lett. 95, 133111 (2009). https://doi.org/10.1063/1.3216584

    Article  CAS  Google Scholar 

  38. C.Y. Zhi, X.D. Bai, E.G. Wang, Enhanced field emission from carbon nanotubes by hydrogen plasma treatment. Appl. Phys. Lett. 81, 1690 (2002). https://doi.org/10.1063/1.1503175

    Article  CAS  Google Scholar 

  39. M.M.H. Raza, S. Khan, S.M. Aalam, M. Sadiq, M. Sarvar, M. Zulfequar, S. Husain, J. Ali, Study the electron field emission properties of plasma-based reduction of graphene oxide (GO): an ex-situ plasma approach. Carbon Trends 5, 100127 (2021). https://doi.org/10.1016/j.cartre.2021.100127

    Article  Google Scholar 

  40. B.B. Wang, Q.J. Cheng, X. Chen, K. Ostrikov, Enhancement of electron field emission of vertically aligned carbon nanotubes by nitrogen plasma treatment. J. Alloys Compd. 509, 9329–9334 (2011). https://doi.org/10.1016/j.jallcom.2011.07.026

    Article  CAS  Google Scholar 

  41. R.T. Khare, R.V. Gelamo, M.A. More, D.J. Late, C.S. Rout, Enhanced field emission of plasma treated multilayer graphene. Appl. Phys. Lett. 107, 123503 (2015). https://doi.org/10.1063/1.4931626

    Article  CAS  Google Scholar 

  42. A. Gohel, K.C. Chin, Y.W. Zhu, C.H. Sow, A.T.S. Wee, Field emission properties of N2 and Ar plasma-treated multi-wall carbon nanotubes. Carbon 43, 2530–2535 (2005). https://doi.org/10.1016/j.carbon.2005.05.003

    Article  CAS  Google Scholar 

  43. M. Sreekanth, S. Ghosh, P. Biswas, S. Kumar, P. Srivastava, Improved field emission from indium decorated multi-walled carbon nanotubes. Appl. Surf. Sci. 383, 84–89 (2016). https://doi.org/10.1016/j.apsusc.2016.04.170

    Article  CAS  Google Scholar 

  44. S. Sridhar, C. Tiwary, S. Vinod, J.J. Taha-Tijerina, S. Sridhar, K. Kalaga, B. Sirota, A.H.C. Hart, S. Ozden, R.K. Sinha, R. Vajtai, W. Choi, K. Kordás, P.M. Ajayan, Field emission with ultralow turn on voltage from metal decorated carbon nanotubes. ACS Nano 8, 7763–7770 (2014). https://doi.org/10.1021/nn500921s

    Article  CAS  Google Scholar 

  45. L.A. Gautier, V. Le Borgne, R. Pandiyan, M.A. El Khakani, Field electron emission enhancement of graphenated MWCNTs emitters following their decoration with Au nanoparticles by a pulsed laser ablation process. Nanotechnology 26, 045706 (2015). https://doi.org/10.1088/0957-4484/26/4/045706

    Article  CAS  Google Scholar 

  46. Y.W. Son, S. Han, J. Ihm, Electronic structure and the field emission mechanism of MgO-coated carbon nanotubes. New J. Phys. 5, 152 (2003). https://doi.org/10.1088/1367-2630/5/1/152

    Article  Google Scholar 

  47. M.K. Tabatabaei, H.G. Fard, J. Koohsorkhi, Low-temperature preparation of a carbon nanotube–ZnO hybrid on glass substrate for field emission applications. Nano (2015). https://doi.org/10.1142/s179329201550040x

    Article  Google Scholar 

  48. C. Te Hu, J.M. Wu, J.W. Yeh, H.C. Shih, ZnO quantum dots decorated on optimized carbon nanotube intramolecular junctions exhibit superior field emission properties. RSC Adv. 6, 60877–60887 (2016). https://doi.org/10.1039/c6ra06404c

    Article  CAS  Google Scholar 

  49. C.J. Shearer, A. Fahy, M. Barr, P.C. Dastoor, J.G. Shapter, Improved field emission stability from single-walled carbon nanotubes chemically attached to silicon. Nanoscale Res. Lett. 7, 1–4 (2012). https://doi.org/10.1186/1556-276X-7-432

    Article  Google Scholar 

  50. K.S. Kim, J.H. Ryu, C.S. Lee, J. Jang, K.C. Park, Enhanced and stable electron emission of carbon nanotube emitter arrays by post-growth hydrofluoric acid treatment. J. Mater. Sci. Mater. Electron. 20, 120–124 (2009). https://doi.org/10.1007/s10854-007-9463-6

    Article  CAS  Google Scholar 

  51. S.H. Shumaila, S. Parveen, J. Ali, A. Kumar, M. Husain, Field emission of MWCNTs/PANi nanocomposites prepared by ex-situ and in-situ polymerization methods. Polym. Compos. 34, 1298–1305 (2013). https://doi.org/10.1002/pc.22542

    Article  CAS  Google Scholar 

  52. Y.D. Lim, Q. Kong, S. Wang, C.W. Tan, B.K. Tay, S. Aditya, Enhanced field emission properties of carbon nanotube films using densification technique. Appl. Surf. Sci. 477, 211–219 (2019). https://doi.org/10.1016/j.apsusc.2017.11.005

    Article  CAS  Google Scholar 

  53. K.Y. Wang, C.H. Chou, C.Y. Liao, Y.R. Li, H.C. Cheng, Densification effects of the carbon nanotube pillar array on field-emission properties. Jpn. J. Appl. Phys. (2016). https://doi.org/10.7567/jjap.55.06gf12

    Article  Google Scholar 

  54. K.-Y. Wang, C.-Y. Liao, H.-C. Cheng, Field-emission characteristics of the densified carbon nanotube pillars array. ECS J. Solid State Sci. Technol. 5, M99–M103 (2016). https://doi.org/10.1149/2.0301609jss

    Article  CAS  Google Scholar 

  55. M.A. Alvi, A.A. Al-Ghamdi, M. Husain, Field emission studies of CNTs/ZnO nanostructured thin films for display devices. Phys. B Condens. Matter. 521, 312–316 (2017). https://doi.org/10.1016/j.physb.2017.07.015

    Article  CAS  Google Scholar 

  56. A. Thapa, Y.R. Poudel, R. Guo, K.L. Jungjohann, X. Wang, W. Li, Direct synthesis of micropillars of vertically aligned carbon nanotubes on stainless-steel and their excellent field emission properties. Carbon 171, 188–200 (2021). https://doi.org/10.1016/j.carbon.2020.08.081

    Article  CAS  Google Scholar 

  57. C. Liu, K.S. Kim, J. Baek, Y. Cho, S. Han, S.W. Kim, N.K. Min, Y. Choi, J.U. Kim, C.J. Lee, Improved field emission properties of double-walled carbon nanotubes decorated with Ru nanoparticles. Carbon 47, 1158–1164 (2009). https://doi.org/10.1016/j.carbon.2008.12.054

    Article  CAS  Google Scholar 

  58. S. Shrestha, W.C. Choi, W. Song, Y.T. Kwon, S.P. Shrestha, C.Y. Park, Preparation and field emission properties of Er-decorated multiwalled carbon nanotubes. Carbon 48, 54–59 (2010). https://doi.org/10.1016/j.carbon.2009.08.029

    Article  CAS  Google Scholar 

  59. C.A. Chen, K.Y. Lee, Y.M. Chen, J.G. Chi, S.S. Lin, Y.S. Huang, Field emission properties of RuO2 thin film coated on carbon nanotubes. Vacuum 84, 1427–1429 (2010). https://doi.org/10.1016/j.vacuum.2009.12.016

    Article  CAS  Google Scholar 

  60. L. Chen, L. Wang, X. Yu, S. Zhang, D. Li, C. Xu, L. Zeng, S. Zhou, J. Zhao, F. Guo, L. Hu, D. Yang, Constructing Ag nanoparticles–single wall carbon hybrid nanostructure to improve field emission properties. Appl. Surf. Sci. 265, 187–191 (2013). https://doi.org/10.1016/j.apsusc.2012.10.164

    Article  CAS  Google Scholar 

  61. Z. Wang, Y. Zuo, Y. Li, X. Han, X. Guo, J. Wang, B. Cao, L. Xi, D. Xue, Improved field emission properties of carbon nanotubes decorated with Ta layer. Carbon 73, 114–124 (2014). https://doi.org/10.1016/j.carbon.2014.02.046

    Article  CAS  Google Scholar 

  62. J. Kennedy, F. Fang, J. Futter, J. Leveneur, P.P. Murmu, G.N. Panin, T.W. Kang, E. Manikandan, Synthesis and enhanced field emission of zinc oxide incorporated carbon nanotubes. Diam. Relat. Mater. 71, 79–84 (2017). https://doi.org/10.1016/j.diamond.2016.12.007

    Article  CAS  Google Scholar 

  63. Y. Wu, J. Li, J. Ye, Y. Song, X. Chen, S. Huang, Z. Sun, W. Ou-Yang, Outstanding field emission properties of titanium dioxide /carbon nanotube composite cathodes on 3D nickel foam. J. Alloys Compd. 726, 675–679 (2017). https://doi.org/10.1016/j.jallcom.2017.08.026

    Article  CAS  Google Scholar 

  64. Y. Song, J. Li, W. Ou-Yang, Thickness effect on field-emission properties of carbon nanotube composite cathode. IEEE Trans. Electron Devices. 66, 716–721 (2019). https://doi.org/10.1109/ted.2018.2878738

    Article  CAS  Google Scholar 

  65. Y. Song, J. Li, Q. Wu, C. Yi, H. Wu, Z. Chen, W. Ou-Yang, Study of film thickness effect on carbon nanotube based field emission devices. J. Alloys Compd. 816, 152648 (2020). https://doi.org/10.1016/j.jallcom.2019.152648

    Article  CAS  Google Scholar 

  66. M. Sreekanth, P. Srivastava, S. Ghosh, Highly enhanced field emission from copper oxide nanoparticle decorated vertically aligned carbon nanotubes: role of interfacial electronic structure. Appl. Surf. Sci. 508, 145215 (2020). https://doi.org/10.1016/j.apsusc.2019.145215

    Article  CAS  Google Scholar 

  67. B.R. Thombare, D.S. Gavhane, G.S. Lole, P.K. Bankar, P.R. Dusane, P.S. Kolhe, N.D. Khupse, R.J. Choudhary, D.M. Phase, R.S. Devan, K.M. Sonawane, M.A. More, S.I. Patil, Cobalt ferrite decorated multiwalled carbon nanotubes as the electrode for efficient field electron emission. Phys. E Low-Dimensional Syst. Nanostruct. 121, 114131 (2020). https://doi.org/10.1016/j.physe.2020.114131

    Article  CAS  Google Scholar 

  68. S. Saifi, S. Parveen, S. Khan, J. Ali, M. Husain, M. Zulfequar, Iron oxide-coated MWCNTs nanohybrid field emitters: a potential cold cathode for next-generation electron sources. J. Mater. Sci. Mater. Electron. 31, 17482–17490 (2020). https://doi.org/10.1007/s10854-020-04304-8

    Article  CAS  Google Scholar 

  69. M.M.H. Raza, S.M. Aalam, M. Sadiq, M. Sarvar, M. Zulfequar, S. Husain, J. Ali, Time-dependent resonating plasma treatment of carbon nanotubes for enhancing the electron field emission properties. J. Mater. Sci. Mater. Electron. (2021). https://doi.org/10.1007/s10854-021-07413-0

    Article  Google Scholar 

  70. P.M. Koinkar, D. Yonekura, R.I. Murakami, T. Moriga, M.A. More, Field electron emission characteristics of plasma treated carbon nanotubes. Mod. Phys. Lett. B. (2015). https://doi.org/10.1142/s0217984915400308

    Article  Google Scholar 

  71. J.Y. Kim, T. Jeong, C.W. Baik, S.H. Park, I. Han, G.H. Kim, S. Yu, Field-emission performance and structural change mechanism of multiwalled carbon nanotubes by oxygen plasma treatment. Thin Solid Films 547, 202–206 (2013). https://doi.org/10.1016/j.tsf.2013.03.059

    Article  CAS  Google Scholar 

  72. A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8(4), 235–246 (2013). https://doi.org/10.1038/nnano.2013.46

    Article  CAS  Google Scholar 

  73. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 21, 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502

    Article  Google Scholar 

  74. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. De Gironcoli, P. Delugas, R.A. Distasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.Y. Ko, A. Kokalj, E. Kücükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N.L. Nguyen, H.V. Nguyen, A. Otero-De-La-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A.P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, S. Baroni, Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter. 29, 465901 (2017). https://doi.org/10.1088/1361-648x/aa8f79

    Article  CAS  Google Scholar 

  75. R.H. Fowler, L. Nordheim, Electron emission in intense electric fields. Proc. R. Soc. London. Ser. A 119, 173–181 (1928). https://doi.org/10.1098/rspa.1928.0091

    Article  CAS  Google Scholar 

  76. R.G. Forbes, Simple good approximations for the special elliptic functions in standard Fowler-Nordheim tunneling theory for a Schottky-Nordheim barrier. Appl. Phys. Lett. 89, 113122 (2006). https://doi.org/10.1063/1.2354582

    Article  CAS  Google Scholar 

  77. R.G. Forbes, J.H.B. Deane, Reformulation of the standard theory of FowlerNordheim tunnelling and cold field electron emission. Proc. R Soc. A 463, 2907–2927 (2007). https://doi.org/10.1098/rspa.2007.0030

    Article  Google Scholar 

  78. R.G. Forbes, Development of a simple quantitative test for lack of field emission orthodoxy. Proc. R. Soc. A 4, 69 (2013). https://doi.org/10.1098/rspa.2013.0271

    Article  Google Scholar 

  79. E. Stratakis, R. Giorgi, M. Barberoglou, T. Dikonimos, E. Salernitano, N. Lisi, E. Kymakis, Three-dimensional carbon nanowall field emission arrays. Appl. Phys. Lett. 96, 043110 (2010). https://doi.org/10.1063/1.3298648

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All the authors thank the CNN and CIF (JMI, New Delhi) for the characterization facilities such as FESEM and Raman spectroscopy, respectively. Author (J. Ali) thanks to UGC(IN) for UGC-BSR Start-up Research Grant under Sanction No. F.30-359/2017 (BSR).

Author information

Authors and Affiliations

Authors

Contributions

MMHR: Idea developed, experimental work, density functional theory calculation, sample preparation, data curation and manuscript written. SMA: Experimental work, data curation, reviewing, and editing. MS: Reviewing, and validation. MS: Data curation, and validation. MZ: Validation, Funding acquisition, and supervise the work. SH: Characterization, validation and supervise the work. JA: Idea developed, Project administration, Funding acquisition, and supervise the work.

Corresponding authors

Correspondence to Mohammad Moeen Hasan Raza or Javid Ali.

Ethics declarations

Conflict of interest

The authors declare that they no conflict of interest.

Ethical approval

The manuscript is not currently being considered for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1720 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, M.M.H., Aalam, S.M., Sadiq, M. et al. Study the electron field emission properties of silver nanoparticles decorated carbon nanotubes-based cold-cathode field emitters via post-plasma treatment. J Mater Sci: Mater Electron 33, 7191–7211 (2022). https://doi.org/10.1007/s10854-022-07900-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07900-y

Navigation