Skip to main content

Advertisement

Log in

Design of color tunable SrLa2Al2O7:Eu3+ perovskite type nanophosphor for near-ultraviolet excited white LEDs

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Eu3+-doped SrLa2Al2O7 (0.5–30 mol%) nano-series was well-synthesized through an effective solution combustion (SC) way. A tetragonal prototype with S.G.–I4/mmm (139) & lattice parameters for SrLa2(1−x)Al2O7:xEu3+ (x = 20 mol%) nanosample have been measured and analyzed via Rietveld refinement process. Surface morphology, crystallite size and chemical composition of SrLa2(1−x)Al2O7:xEu3+ (x = 20 mol%) nanopowder are checked through SEM, TEM & EDS analysis. The energy band-gap (Eg = 4.62 eV) is determined for optimum (x = 20 mol%) composition using DR measurements. Further, 396 nm energy excitation provides blue-white-red emissions with intense band at 621 nm, deriving from 5D07F2 transition of Eu3+ ions. The critical separation among dopant centres for x = 20 mol% is found as 8.82 Å, for which dipole-quadrupole (s = 8.04) energy transfer mechanism is determined. Judd–Ofelt (J-O) theory is used to evaluate the intensity parameters Ωλ (λ = 2, 4) = 1.38 × 10–20 & 0.24 × 10–20 cm2 of Eu3+ ions in SrLa2Al2O7 host lattice. The results give CIE color coordinates covering blue to red region (x = 0.2452, y = 0.2380 to x = 0.6376, y = 0.3527) and CCT value range (30,812-1807 K) for warm as well as cool light emission. Finally, the concentration-dependent chromatic behaviour in blue-white-red region reflects the role of Eu3+-activated SrLa2Al2O7 nanophosphor in single-phased as well as RGB-based NUV-WLEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. X. Wang, Z. Zhao, Q. Wu, Y. Li, C. Wang, A. Mao, Y. Wang, Dalton Trans. 44, 11057 (2015)

    CAS  Google Scholar 

  2. S. Devi, A. Khatkar, V.B. Taxak, M. Dalal, S. Chahar, J. Dalal, S.P. Khatkar, J. Alloys Compd. 767, 409 (2018)

    CAS  Google Scholar 

  3. VP Manjari, CR Krishna, CV Reddy, SM Begum, YP Reddy, RVSSN Ravikumar (2014) J Lumin 145:324

  4. M. RajeshYadav, B. JayaRaja, M. Avinash, C. RamaKrishna, R.V.S.S.N. Ravikumar, J Mater Sci 27, 1318 (2016)

    CAS  Google Scholar 

  5. B. Raja, M. Yadav, V. Manjari, B. Babu, C. Krishna, R. Ravikumar, J. Mol. Struc. 1076, 461 (2014)

    Google Scholar 

  6. F. Baur, F. Glocker, T. Jüstel, J. Mater Chem C 3, 20542064 (2015)

    Google Scholar 

  7. A. Chapel, R. Boonsin, G. Chadeyron, D. Boyer, A. Bousquet, R. Mahiou, W. Henrique Cassinelli, C.V. Santilli, S. Therias, New J. Chem 41, 12006 (2017)

    CAS  Google Scholar 

  8. H. Xu, L. Wang, D. Qu, Z. Si, J. Shi, RSC Adv. 7, 41282 (2017)

    CAS  Google Scholar 

  9. M. Dalal, V.B. Taxak, S. Chahar, J. Dalal, A. Khatkar, S.P. Khatkar, J. Alloy. Compd. 686, 366 (2016)

    CAS  Google Scholar 

  10. S. Devi, M. Dalal, J. Dalal, A. Hooda, A. Khatkar, V.B. Taxak, S.P. Khatkar, Ceram. Int. 45, 7397 (2019)

    CAS  Google Scholar 

  11. M. Jiao, Y. Jia, W. Lü, W. Lv, Q. Zhao, B. Shao, H. You, J. Mater. Chem. C 2, 90 (2014)

    CAS  Google Scholar 

  12. X. Zhang, L. Zhou, Q. Pang, M. Gong, RSC Adv. 5, 54622 (2015)

    CAS  Google Scholar 

  13. S. Singh, S.P. Khatkar, V.B. Taxak, J Mater Sci: Mater Electron 24, 4677 (2013)

    CAS  Google Scholar 

  14. J. Dalal, M. Dalal, S. Devi, R. Devi, A. Hooda, A. Khatkar, V.B. Taxak, S.P. Khatkar, J. Lumin. 210, 293 (2019)

    CAS  Google Scholar 

  15. M. Dalal, V.B. Taxak, J. Dalal, A. Khatkar, S. Chahar, R. Devi, S.P. Khatkar, J. Alloys Compd. 698, 662 (2017)

    CAS  Google Scholar 

  16. S. Chahar, R. Devi, M. Dalal, P. Boora, V.B. Taxak, S.P. Khatkar, J. Lumin. 194, 271 (2018)

    CAS  Google Scholar 

  17. L. Yi, X.Q. Liu, L. Li, X.M. Chen, Int. J. Appl. Ceram. Technol. 10(S1), E177 (2013)

    CAS  Google Scholar 

  18. L. Yi, X.Q. Liu, X.M. Chen, Int. J. Appl. Ceram. Technol. 12(S3), E33 (2015)

    CAS  Google Scholar 

  19. I. Zvereva, Y. Smirnov, V. Gusarov, V. Popova, J. Choisnet, Solid State Sci. 5, 343 (2003)

    CAS  Google Scholar 

  20. S. Devi, V.B. Taxak, S. Chahar, M. Dalal, J. Dalal, A. Hooda, A. Khatkar, R.K. Malik, S.P. Khatkar, Ceram. Int. 45, 15571 (2019)

    CAS  Google Scholar 

  21. M. Dalal, V.B. Taxak, X.X.X. Sheetal, D. Kumar, S.P. Khatkar, Mater. Chem. Phys. 149, 713 (2015)

    Google Scholar 

  22. S.T. Aruna, A.S. Mukasyan, Curr. Opin. Solid State Mater. Sci. 12, 44 (2008)

    CAS  Google Scholar 

  23. K. Patil, Curr. Opin. Solid State Mater. Sci. 2, 158 (1997)

    CAS  Google Scholar 

  24. A.C. Larson, R.B.V. Dreele, Los Alamos National Laboratory Report LAUR 86, 1 (2000)

    Google Scholar 

  25. B.H. Toby, R.B.V. Dreele, J. Appl. Crystallogr. 46, 544 (2013)

    CAS  Google Scholar 

  26. B.R. Kumar, B. Hymavathi, J. Asian Ceram. Soc. 5, 94 (2017)

    Google Scholar 

  27. Z. Xia, J. Zhou, Z. Mao, J. Mater. Chem. C 1, 5917 (2013)

    CAS  Google Scholar 

  28. A. Hooda, S.P. Khatkar, A. Khatkar, M. Kumar, M. Dalal, V.B. Taxak, J. Mater Sci: Mater Electron 30, 1297 (2018)

    Google Scholar 

  29. F. Davar, A. Hassankhani, M.R.L. Estarki, Ceram. Int. 39, 2933 (2013)

    CAS  Google Scholar 

  30. X. Wang, C. Liu, T. Yu, X. Yan, Phys. Chem. Chem. Phys. 16, 13440 (2014)

    CAS  Google Scholar 

  31. Y. Liu, G. Liu, J. Wang, X. Dong, W. Yu, New J. Chem. 39, 8282 (2015)

    CAS  Google Scholar 

  32. P. Kubelka, J. Opt. Soc. Am. 38, 448 (1948)

    CAS  Google Scholar 

  33. J. Chen, Y. Liu, L. Mei, H. Liu, M. Fang, Z. Huang, Sci. Rep. 5, 9673 (2015)

    CAS  Google Scholar 

  34. V.B. Pawade, A. Zanwar, R.P. Birmod, S.J. Dhoble, L.F. Koao, J. Mater Sci: Mater Electron (2017). https://doi.org/10.1007/s10854-017-7536-8

    Article  Google Scholar 

  35. B.P. Maheshwary, R.A. Singh, J. Singh, Chem. 39, 4494 (2015)

    CAS  Google Scholar 

  36. S. Chahar, M. Dalal, R. Devi, A. Khatkar, P. Boora, V.B. Taxak, S.P. Khatkar, J. Lumin. 199, 442 (2018)

    CAS  Google Scholar 

  37. A. Lakshmanan, R.S. Bhaskar, P.C. Thomas, R.S. Kumar, V.S. Kumar, M.T. Jose, Mater. Lett. 64, 1809 (2010)

    CAS  Google Scholar 

  38. E. Pavitra, G.S.R. Raju, J.Y. Park, Y.H. Ko, J.S. Yu, J. Alloys Compd. 553, 291 (2013)

    CAS  Google Scholar 

  39. P. Niu, X. Liu, Y. Wang, W. Zhao, J. Mater. Sci: Mater. Electron. 29, 124 (2017)

    Google Scholar 

  40. B. Tian, B. Chen, Y. Tian, X. Li, J. Zhang, J. Sun, H. Zhong, L. Cheng, S. Fu, H. Zhong, Y. Wang, X. Zhang, H. Xia, R. Hua, J. Mater. Chem. C 1, 2338 (2013)

    CAS  Google Scholar 

  41. G. Blasse, Phys. Lett. A 28, 444 (1968)

    CAS  Google Scholar 

  42. D.L. Dexter, J. Chem. Phys. 21, 836 (1953)

    CAS  Google Scholar 

  43. Y. Tian, B. Chen, B. Tian, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang, Q. Meng, J. Alloys Compd. 509, 6096 (2011)

    CAS  Google Scholar 

  44. F. Auzel, J. Lumin. 100, 125 (2002)

    CAS  Google Scholar 

  45. M.H.V. Werts, R.T.F. Jukes, J.W. Verhoeven, Phys. Chem. Chem. Phys. 4, 1542 (2002)

    CAS  Google Scholar 

  46. B.R. Judd, Phys. Rev. 127, 750 (1962)

    CAS  Google Scholar 

  47. G.S. Ofelt, J. Chem. Phys. 37, 511 (1962)

    CAS  Google Scholar 

  48. C.S. McCamy, Color Res. Appl. 17, 142 (1992)

    Google Scholar 

  49. P. Du, L. Wang, J.S. Yu, J. Alloy. Compd. 673, 426 (2016)

    CAS  Google Scholar 

  50. M. Venkataravanappa, H. Nagabhushana, G.P. Darshan, B.D. Prasad, G.R. Vijayakumar, H.B. Premkumar, Udayabhanu. Ultrason. Sonochem. 33, 226 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, Sushma Devi gratefully acknowledges the financial support in the form of senior research fellowship (SRF) from University Grant Commission (UGC), New Delhi, India (Award No. 2061410088).

Author information

Authors and Affiliations

Authors

Contributions

SD: Conceptualization, Methodology, Software, Writing – original draft. VBT: Software validation, Visualization, Writing – Review & Editing. DS: Formal analysis, Validation, Conceptualization. AH: Methodology, Formal analysis, Software. SPK: Project administration, Supervision.

Corresponding author

Correspondence to S. P. Khatkar.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and institutional guidelines for the care are followed.

Data availability

The authors declare that the data that support the findings of this study are available on request from the corresponding author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 293 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, S., Taxak, V.B., Sangwan, D. et al. Design of color tunable SrLa2Al2O7:Eu3+ perovskite type nanophosphor for near-ultraviolet excited white LEDs. J Mater Sci: Mater Electron 33, 5983–5996 (2022). https://doi.org/10.1007/s10854-022-07778-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07778-w

Navigation