Skip to main content
Log in

Solvothermal synthesis of polyoxometalate-modified UiO-66-NH2 for enhanced removal of ciprofloxacin from aqueous solution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Removal of ciprofloxacin (CIP) from wastewater is of significance to protect the environment. In this study, phosphomolybdic acid (H3PMo12O40) -modified metal–organic framework (UiO-66-NH2) materials were prepared by the solvothermal method for the removal of CIP from wastewater. The adsorption performance of H3PMo12O40@ UiO-66-NH2 on CIP was remarkably superior to that of pure UiO-66-NH2. Several experiments with altered conditions, including CIP concentration, contact time, and pH, were explored to understand the adsorption performance of H3PMo12O40@ UiO-66-NH2 on CIP solutions. The experimental results show that when pH = 7, T = 323 K, the amount of H3PMo12O40 is 0.14 g, which is the best CIP adsorption condition for H3PMo12O40@UiO-66-NH2, and the adsorption amount is 164.28 mg g−1. The adsorption kinetics and isotherms of CIP molecules on the modified UiO-66-NH2 adsorbent showed that they were basically in agreement with the pseudo-second-order kinetic model and Langmuir model, respectively. Thermodynamic parameters indicate that the adsorption process is spontaneous endothermic. After five cycles of experiments, the adsorbent can still remove 81% of the CIP, indicating that it is reproducible and practical for CIP. Hence, the H3PMo12O40@ UiO-66-NH2 has potential application value as an antibiotic’s adsorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Y. Xiang, X. Yang, Z. Xu, W. Hu, Y. Zhou, Z. Wan, Y. Yang, Y. Wei, J. Yang, D.C. Tsang, Sci. Total Environ. 709, 136079 (2020)

    Article  CAS  Google Scholar 

  2. B. Jubeh, Z. Breijyeh, R. Karaman, Molecules 25, 2888 (2020)

    Article  CAS  Google Scholar 

  3. D.K. Yoo, B.N. Bhadra, S.H. Jhung, J. Hazard. Mater. 403, 123655 (2021)

    Article  CAS  Google Scholar 

  4. J.M. Park, S.H. Jhung, Chem. Eng. J. 396, 125224 (2020)

    Article  CAS  Google Scholar 

  5. F.M. Mpatani, A.A. Aryee, A.N. Kani, R. Han, Z. Li, E. Dovi, L. Qu, J. Cleaner Prod. 127359 (2021).

  6. I.A. Ricardo, E.A. Alberto, A.H.S. Júnior, D.L.P. Macuvele, N. Padoin, C. Soares, H.G. Riella, M.C.V. Starling, A.G. Trovó, Chem. Eng. J. 130282 (2021).

  7. S.O. Ganiyu, E.D. Van Hullebusch, M. Cretin, G. Esposito, M.A. Oturan, Sep. Purif. Technol. 156, 891–914 (2015)

    Article  CAS  Google Scholar 

  8. V. Homem, L. Santos, J. Environ. Manage. 92, 2304–2347 (2011)

    Article  CAS  Google Scholar 

  9. N.A. Khan, S.U. Khan, S. Ahmed, I.H. Farooqi, A. Dhingra, A. Hussain, F. Changani, Asian J. Water Environ. Pollut. 16, 81–86 (2019)

    Article  Google Scholar 

  10. I. Cota, F.F. Martinez, Coord. Chem. Rev. 351, 189–204 (2017)

    Article  CAS  Google Scholar 

  11. F.E. Che Othman, N. Yusof, J. González-Benito, X. Fan, A.F. Ismail, Polymers 12, 2117 (2020)

    Article  Google Scholar 

  12. B. Maazinejad, O. Mohammadnia, G.A. Ali, A.S. Makhlouf, M.N. Nadagouda, M. Sillanpää, A.M. Asiri, S. Agarwal, V.K. Gupta, H. Sadegh, J. Mol. Liq. 298, 112001 (2020)

    Article  CAS  Google Scholar 

  13. Y. Li, X. Yan, X. Hu, R. Feng, M. Zhou, Chem. Eng. J. 375, 122003 (2019)

    Article  CAS  Google Scholar 

  14. A. Abd-Elhamid, E.A. Kamoun, A.A. El-Shanshory, H.M. Soliman, H. Aly, J. Mol. Liq. 279, 530–539 (2019)

    Article  CAS  Google Scholar 

  15. S. Soni, P. Bajpai, J. Mittal, C. Arora, J. Mol. Liq. 314, 113642 (2020)

    Article  CAS  Google Scholar 

  16. K. Zhang, F. Tsai, N. Ma, Y. Xia, H. Liu, X. Zhan, X. Yu, X. Zeng, T. Jiang, D. Shi, Materials 10, 205 (2017)

    Article  Google Scholar 

  17. M. Massoudinejad, M. Ghaderpoori, A. Shahsavani, A. Jafari, B. Kamarehie, A. Ghaderpoury, M.M. Amini, J. Mol. Liq. 255, 263–268 (2018)

    Article  CAS  Google Scholar 

  18. D. Sun, L. Ye, Z. Li, Appl. Catal. B-Environ. 164, 428–432 (2015)

    Article  CAS  Google Scholar 

  19. X. Zhang, W. Wang, Z. Hu, G. Wang, K. Uvdal, Coord. Chem. Rev. 284, 206–235 (2015)

    Article  CAS  Google Scholar 

  20. Y. Jiang, C. Liu, J. Caro, A. Huang, Microporous Mesoporous Mater. 274, 203–211 (2019)

    Article  CAS  Google Scholar 

  21. X. Li, S.C. Pillai, L. Wei, Z. Liu, L. Huang, Q. Huang, X. Jia, D. Hou, H. Song, H. Wang, J. Hazard. Mater. 399, 122946 (2020)

    Article  CAS  Google Scholar 

  22. S. Subudhi, S. Mansingh, G. Swain, A. Behera, D. Rath, K. Parida, Inorg. Chem. 58, 4921–4934 (2019)

    Article  CAS  Google Scholar 

  23. B. Zhang, X. Han, P. Gu, S. Fang, J. Bai, J. Mol. Liq. 238, 316–325 (2017)

    Article  CAS  Google Scholar 

  24. G. Wu, J. Ma, S. Li, J. Guan, B. Jiang, L. Wang, J. Li, X. Wang, L. Chen, J. Colloid Interface Sci. 528, 360–371 (2018)

    Article  CAS  Google Scholar 

  25. F. Yu, S. Sun, S. Han, J. Zheng, J. Ma, Chem. Eng. J. 285, 588–595 (2016)

    Article  CAS  Google Scholar 

  26. C. Liang, X. Zhang, P. Feng, H. Chai, Y. Huang, Chem. Eng. J. 344, 95–104 (2018)

    Article  CAS  Google Scholar 

  27. A.K. Kushwaha, N. Gupta, M. Chattopadhyaya, J. Saudi Chem. Soc. 18, 200–207 (2014)

    Article  CAS  Google Scholar 

  28. Z. Aghaei, H. Vojoudi, J.B. Ghasemi, S. Bahar, A. Badiei, Microchem J. 157, 104878 (2020)

    Article  CAS  Google Scholar 

  29. S. Dadfarnia, A.H. Shabani, S. Moradi, S. Emami, Appl. Surf. Sci. 330, 85–93 (2015)

    Article  CAS  Google Scholar 

  30. J. Fu, Q. Xin, X. Wu, Z. Chen, Y. Yan, S. Liu, M. Wang, Q. Xu, J. Colloid Interface Sci. 461, 292–304 (2016)

    Article  CAS  Google Scholar 

  31. A. Olajire, A. Giwa, I. Bello, Int. J. Environ. Sci. Technol. 12, 939–950 (2015)

    Article  CAS  Google Scholar 

  32. C. Li, X. Wang, D. Meng, L. Zhou, Int. J. Biol. Macromol. 107, 1871–1878 (2018)

    Article  CAS  Google Scholar 

  33. E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján, I. Anastopoulos, J. Mol. Liq. 273, 425–434 (2019)

    Article  CAS  Google Scholar 

  34. X. Fang, S. Wu, Y. Wu, W. Yang, Y. Li, J. He, P. Hong, M. Nie, C. Xie, Z. Wu, Appl. Surf. Sci. 518, 146226 (2020)

    Article  CAS  Google Scholar 

  35. Q. Chen, Q. He, M. Lv, Y. Xu, H. Yang, X. Liu, F. Wei, Appl. Surf. Sci. 327, 77–85 (2015)

    Article  CAS  Google Scholar 

  36. X. He, F. Deng, T. Shen, L. Yang, D. Chen, J. Luo, X. Luo, X. Min, F. Wang, J. Colloid Interface Sci. 539, 223–234 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was kindly supported by the National Natural Science Foundation of China (21171053), Natural Science Foundation of Hubei Province, China (2021J089), Natural Science Foundation of Hubei Province Education Committee, China (D20213102), Graduate Student Innovation Research Foundation of Hubei Normal University (20210116).

Author information

Authors and Affiliations

Authors

Contributions

HH: conceptualization, methodology, data curation, writing-original draft. QL: investigation, data curation, validation. SYF: software, validation. XJL: software, supervision. YY: data curation, funding acquisition. SJY: writing-review and editing, supervision, funding acquisition.

Corresponding author

Correspondence to Shui-Jin Yang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Lv, Q., Feng, SY. et al. Solvothermal synthesis of polyoxometalate-modified UiO-66-NH2 for enhanced removal of ciprofloxacin from aqueous solution. J Mater Sci: Mater Electron 33, 4184–4196 (2022). https://doi.org/10.1007/s10854-021-07614-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07614-7

Navigation