Skip to main content
Log in

Wet sandblasting pretreatment of diamond wire sawn multi-crystalline silicon wafer for surface acid texturization in photovoltaics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

As the substrate of photovoltaic solar cells, multi-crystalline silicon (mc-Si) wafers cut by diamond wire saw are less effective in commercial acid texturing, due to the saw marks and amorphous silicon layer on the as-sawn wafer surface. This paper proposes to wet sandblasting process for surface modification of diamond wire sawn mc-Si wafers before acid texturing to solve this problem. The effect of wet sandblasting modification on the surface morphology of mc-Si wafers was analyzed, as well as the surface morphology and anti-reflection performance of mc-Si wafers after wet acid etching were studied. The results show that the saw marks and amorphous silicon layer on the surface of as-sawn mc-Si wafer can be effectively removed by wet sandblasting with appropriate processing parameters. The reflectivity of pretreated mc-Si wafers after acid texturing is significantly lower than that of the unpretreated ones, which can meet the production requirements of solar photovoltaic cells. The research results provide a research idea to promote the effective combination of diamond wire saw slicing mc-Si and commercial acid texturing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

References

  1. P. Baliozian, J. Trube, M. Fischer, S. Al-Hajjawi, R. Yadav, S. Nold, R. Preu, In 33rd European Photovoltaic Solar Energy Conference and Exhibition. International Conference (2017).

  2. International Technology Roadmap for Photovoltaic. In 11th ed. VDMA (2020).

  3. N. Soudi, S. Nanayakkara, N. Jahed, S. Naahidi, Sol. Energy 208, 31–45 (2020). https://doi.org/10.1016/j.solener.2020.07.048

    Article  CAS  Google Scholar 

  4. G. Beaucarne, S. Bourdais, A. Slaoui, J. Poortmans, Thin Solid Films 403–404, 229–237 (2002). https://doi.org/10.1016/S0040-6090(01)01559-0

    Article  Google Scholar 

  5. H.S.G.K. Murthy, Resour. Conserv. Recycl. 104, 194–205 (2015). https://doi.org/10.1016/j.resconrec.2015.08.009

    Article  Google Scholar 

  6. Z. Xu, X. Xu, C. Cui, H. Huang, Sol. Energy 191, 210–218 (2019). https://doi.org/10.1016/j.solener.2019.08.028

    Article  CAS  Google Scholar 

  7. F. Cao, K. Chen, J. Zhang, X. Ye, J. Li, S. Zou, X. Su, Sol. Energy Mater. Sol. Cells 141, 132–138 (2015). https://doi.org/10.1016/j.solmat.2015.05.030

    Article  CAS  Google Scholar 

  8. R. Deng, N. Chang, Z. Ouyang, C. Chong, Renew. Sust. Energ. Rev. 109, 532–550 (2019). https://doi.org/10.1016/j.rser.2019.04.020

    Article  CAS  Google Scholar 

  9. A. Bidiville, K. Wasmer, R. Kraft, C. Ballif, In 24th European Photovoltaic Solar Energy Conference, 1309–1314 (2009).

  10. W. Chen, X. Liu, M. Li, C. Yin, L. Zhou, Mater. Sci. Semicond. Process 27, 220–227 (2014). https://doi.org/10.1016/j.mssp.2014.06.049

    Article  CAS  Google Scholar 

  11. T. Wang, H. Lee, C. Lee, Y. Cheng, H. Chen, Sol. Energy 161, 220–225 (2018). https://doi.org/10.1016/j.solener.2017.12.059

    Article  CAS  Google Scholar 

  12. T. Pu, Y. Gao, L. Wang, Y. Yin, Int. J. Adv. Manuf. Technol. 107, 843–858 (2020). https://doi.org/10.1007/s00170-020-05099-y

    Article  Google Scholar 

  13. J. Yoo, J. Cho, S. Ahn, J. Gwak, A. Cho, Y. Eo, J. Yun, K. Yoon, J. Yi, Thin Solid Films 546(1), 275–278 (2013). https://doi.org/10.1016/j.tsf.2013.02.045

    Article  CAS  Google Scholar 

  14. W. Chen, C.H. Franklin, Sol. Energy Mater. Sol. Cells 157, 48–54 (2016). https://doi.org/10.1016/j.solmat.2016.05.046

    Article  CAS  Google Scholar 

  15. Y. Zhang, J. Zhao, C. Zhu, L. Bian, H. Shi, S. Zhang, H. Ma, W. Huang, Chin. Chem. Lett. 30, 1974–1978 (2019). https://doi.org/10.1016/j.cclet.2019.09.005

    Article  Google Scholar 

  16. J. Yoo, Sol. Energy (2010). https://doi.org/10.1016/j.solener.2010.01.031

    Article  Google Scholar 

  17. G. Su, X. Liu, X. Dai, Z. Jin, H. Sun, K. Tao, P. Zhang, C. Zhang, R. Jia, Sol. Energy Mater Sol. Cells 186, 42–49 (2018). https://doi.org/10.1016/j.solmat.2018.06.011

    Article  CAS  Google Scholar 

  18. Y. Niu, H. Liu, X. Liu, Y. Jiang, X. Ren, P. Cai, T. Zhai, Mater. Sci. Semicond. Process. 56, 119–126 (2016). https://doi.org/10.1016/j.mssp.2016.08.004

    Article  CAS  Google Scholar 

  19. P. Zhang, R. Jia, K. Tao, S. Jiang, X. Dai, H. Sun, Z. Jin, Z. Ji, X. Liu, C. Zhao, H. Liu, Y. Zhao, L. Tang, Sol. Energy Mater Sol. Cells 200, 109983 (2019). https://doi.org/10.1016/j.solmat.2019.109983

    Article  CAS  Google Scholar 

  20. K. Chen, T.P. Pasanen, V. Vahanissi, H. Savin, IEEE J. Photovolt. 9(4), 974–979 (2019). https://doi.org/10.1109/JPHOTOV.2019.2917787

    Article  Google Scholar 

  21. Y. Jung, S. Bae, H. Lee, D. Kim, Y. Kang, IEEE J. Photovolt. 10, 1545–1551 (2020). https://doi.org/10.1109/JPHOTOV.2020.3014858

    Article  Google Scholar 

  22. K. Araki, K. Ikematsu, Y. Ota, K. Nishioka, Sol. Energy 86(10), 3021–3025 (2012). https://doi.org/10.1016/j.solener.2012.07.009

    Article  CAS  Google Scholar 

  23. J. Zhang, Y. Peng, X. Ye, X. Zhou, G. Hao, L. Zhou, Mater. Sci. Semicond Process. 74, 292–296 (2018). https://doi.org/10.1016/j.mssp.2017.09.031

    Article  CAS  Google Scholar 

  24. J. Zhang, H. Fu, X. Ye, L. Zhou, Mater. Res. Express. 6(2), 25911–25917 (2019). https://doi.org/10.1088/2053-1591/aaf118

    Article  CAS  Google Scholar 

  25. Y. Jung, K. Min, S. Bae, Y. Kang, H. Lee, D. Kim, IEEE J. Photovolt. 11, 36–42 (2021). https://doi.org/10.1109/JPHOTOV.2020.3033972

    Article  Google Scholar 

  26. J. Zhang, X. Zhou, L. Zhou, Y. Kuang, Y. Liu, Mater. Sci. Semicond. Process. 117, 105191 (2020). https://doi.org/10.1016/j.mssp.2020.105191

    Article  CAS  Google Scholar 

  27. J. Ding, S. Zou, J. Choi, J. Cui, D. Yuan, H. Sun, C. Wu, J. Zhu, X. Ye, X. Su, Sol. Energy Mater. Sol. C. 214, 110587 (2020). https://doi.org/10.1016/j.solmat.2020.110587

    Article  CAS  Google Scholar 

  28. J. Jiang, S. Sun, D. Wang, Y. Yang, Int. J. Mach. Tool Manuf. 156, 103595 (2020). https://doi.org/10.1016/j.ijmachtools.2020.103595

    Article  Google Scholar 

  29. P. Panek, L. Lipiński, J. Dutkiewicz, Mater. Sci. 40, 1459–1463 (2005). https://doi.org/10.1007/s10853-005-0583-1

    Article  CAS  Google Scholar 

  30. S. Oswald, K. Wetzig, M. Steinert, J. Acker, J. Phys. Chem. C 111(5), 2133–2140 (2007). https://doi.org/10.1021/jp066348j

    Article  CAS  Google Scholar 

  31. J. Hemalatha, Mater. Manuf. Process. 23(7), 735–736 (2008). https://doi.org/10.1080/10426910802344098

    Article  CAS  Google Scholar 

  32. B. Meinel, T. Koschwitz, R. Heinemann, J. Acker, Mater. Sci. Semicond. Proc. 26, 695–703 (2014). https://doi.org/10.1016/j.mssp.2014.08.047

    Article  CAS  Google Scholar 

Download references

Funding

The work is financially supported by the National Natural Science Foundation of China (No. 51875322), and Key Research and Development Program of Shandong Province, China (No. 2020CXGC011003).

Author information

Authors and Affiliations

Authors

Contributions

RL: methodology, writing—original draft preparation, data curation, visualization. YG: conceptualization, methodology, Writing—review & editing, project administration, funding acquisition, supervision. CY: methodology.

Corresponding author

Correspondence to Yufei Gao.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors give their consent for publication. The authors declare that they have no conflict of interest.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Gao, Y. & Yang, C. Wet sandblasting pretreatment of diamond wire sawn multi-crystalline silicon wafer for surface acid texturization in photovoltaics. J Mater Sci: Mater Electron 33, 3676–3686 (2022). https://doi.org/10.1007/s10854-021-07561-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07561-3

Navigation