Skip to main content

Advertisement

Log in

Enhanced breakdown strength of PVDF textile composites by BiFeO3 fibers in low loading

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

BiFeO3/PVDF textile composite films with different volume fraction fillers are prepared by electrospinning. PVDF coating effectively prevents the interweaving between fibers, hinders the charge accumulation, prolongs the conductive path, and improves the breakdown field strength of the composite. And the built-in electric field, which is opposite to the external electric field, hinders the effect of the external electric field and improves the breakdown field strength of the composite. The energy storage density of 0.5 vol% BiFeO3/PVDF textile film reaches 9.6 J cm−3 under the electric field of 380 kV mm−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S. Cho, J.S. Lee, J. Jang, Adv. Mater. Interfaces 2, 1500098 (2015)

    Article  Google Scholar 

  2. R. Wen, J. Guo, C. Zhao, Y. Liu, Adv. Mater. Interfaces 5, 1701088 (2018)

    Article  Google Scholar 

  3. X. Zhang, B.W. Li, L. Dong, H. Liu, W. Chen, Y. Shen, C.W. Nan, Adv. Mater. Interfaces 5, 1800096 (2018)

    Article  Google Scholar 

  4. M.J. Feng, Q.G. Chi, Y. Feng, Y. Zhang, T.D. Zhang, C.H. Zhang, Q.G. Chen, Q.Q. Lei, Compos. B. Eng. 198, 108206 (2020)

    Article  CAS  Google Scholar 

  5. H. Tang, Y. Lin, H.A. Sodano, Adv. Energy Mater. 2, 469–476 (2012)

    Article  CAS  Google Scholar 

  6. Y.J. Zhang, H.B. Yang, Z.E. Dang, S.L. Zhan, C. Sun, G.L. Hu, Y. Lin, Q.B. Yuan, ACS Appl. Mater. Interfaces 12, 22137–22145 (2020)

    Article  CAS  Google Scholar 

  7. Z.H. Shen, J.J. Wang, Y. Lin, C.W. Nan, L.Q. Chen, Y. Shen, Adv. Mater. 30, 1704380 (2018)

    Article  Google Scholar 

  8. H. Luo, X.F. Zhou, C. Ellingford, Y. Zhang, S. Chen, K. Zhou, D. Zhang, C.R. Bowen, C. Wan, Chem. Soc. Rev. 48, 4424–4465 (2019)

    Article  CAS  Google Scholar 

  9. A. Sihvola, Subsurf. Sens. Technol. Appl. 1, 393–415 (2000)

    Article  Google Scholar 

  10. A. Mayeen, M.S. Kala, S. Sunija, D. Rouxel, R.N. Bhowmik, S. Thomas, N. Kalarikkal, J. Alloys Compd. 837, 155492 (2020)

    Article  CAS  Google Scholar 

  11. B. Xie, H.B. Zhang, Q. Zhang, J.D. Zang, C. Yang, Q.P. Wang, M.Y. Li, S.L. Jiang, J. Mater. Chem. A 5, 6070–6078 (2017)

    Article  CAS  Google Scholar 

  12. S. Bhardwaj, J.D. Sharma, S. Chand, K.K. Raina, R. Kumar, Solid State Commun. 326, 114176 (2021)

    Article  CAS  Google Scholar 

  13. Z.Y. Li, Z.H. Shen, X. Yang, X.M. Zhu, Y. Zhou, L.J. Dong, C.X. Xiong, Q. Wang, Compos. Sci. Technol. 202, 108591 (2021)

    Article  CAS  Google Scholar 

  14. L.M. Yao, Z.B. Pan, J.W. Zhai, G.Z. Zhang, Z.Y. Liu, Y.H. Liu, Compos. A Appl. Sci. Manuf. 109, 48–54 (2018)

    Article  CAS  Google Scholar 

  15. Z. Yang, J. Wang, Y.L. Hu, C.Y. Deng, K.J. Zhu, J.H. Qiu, Compos. A Appl. Sci. Manuf. 128, 105675 (2020)

    Article  CAS  Google Scholar 

  16. M.N. Feng, M. Chen, J. Qiu, M. He, Y.M. Huang, J. Lin, J. Alloys Compd. 856, 158213 (2021)

    Article  CAS  Google Scholar 

  17. P.P. Xu, S.B. Luo, J.Y. Yu, L.Q. Cao, S.H. Yu, R. Sun, C.P. Wong, Adv. Eng. Mater. 21, 1900817 (2019)

    Article  CAS  Google Scholar 

  18. B.C. Luo, X.H. Wang, Y.P. Wang, L.T. Li, J. Mater. Chem. A 2, 510–519 (2014)

    Article  CAS  Google Scholar 

  19. Z. Wang, T. Wang, C. Wang, Y.J. Xiao, P.P. Jing, Y.F. Cui, Y.P. Pu, ACS Appl. Mater. Interfaces 9, 29130–29139 (2017)

    Article  CAS  Google Scholar 

  20. D. Lebeugle, D. Colson, A. Forget, M. Viret, Appl. Phys. Lett. 91, 022907 (2007)

    Article  Google Scholar 

  21. J. Hirschinger, W. Kranig, H.W. Spiess, Colloid Polym. Sci. 269, 993–1002 (1991)

    Article  CAS  Google Scholar 

  22. Z. Wang, W. Nian, T. Wang, Y.J. Xiao, H.N. Chen, J. Mater. Sci. Mater. Electron. 29, 9129–9136 (2018)

    Article  CAS  Google Scholar 

  23. S.J. Ding, S.H. Yu, X.D. Zhu, S.H. Xie, R. Sun, W.H. Liao, C.P. Wong, Appl. Phys. Lett. 111, 153902 (2017)

    Article  Google Scholar 

  24. D.K. Rana, S.K. Kundu, R.J. Choudhary, S. Basu, Mater. Res. Express. 6, 0850d9 (2019)

    Article  CAS  Google Scholar 

  25. Z. Wang, Y.X. Li, Y.B. Li, Z.H. Yi, M.L. Kong, J. Mater. Sci. Mater. Electron. 32, 19703–19712 (2021)

    Article  CAS  Google Scholar 

  26. A. Sasmal, S. Sen, P.S. Devi, Soft Matter 16, 8492–8505 (2020)

    Article  CAS  Google Scholar 

  27. A. Sasmal, S. Sen, P.S. Devi, Phys. Chem. Chem. Phys. 21, 5974–5988 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was supported by the National Natural Science Foundation of China (51572160), the National Key Research and Development Program of Shaanxi Province (2021GY-224) and Graduate Innovation Fund of Shaanxi University of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

ZW contributed to the conception of the study, YL performed the experiment, the data analyses and wrote the manuscript, YL contributed significantly to analysis, ZY performed the data analyses.

Corresponding author

Correspondence to Zhuo Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 343.2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, Z., Li, Y. et al. Enhanced breakdown strength of PVDF textile composites by BiFeO3 fibers in low loading. J Mater Sci: Mater Electron 33, 3215–3224 (2022). https://doi.org/10.1007/s10854-021-07523-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07523-9

Navigation