Skip to main content

Advertisement

Log in

Design and fabrication of Co3O4 anchored PANI binary composite supercapacitors with enhanced electrochemical performance and stability

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Co3O4 anchored polyaniline (PANI) binary composite with excellent electrochemical activity is successfully developed by lowering the synthesis temperature. The composite achieves a specific mesoporous structure at subzero temperature and exhibits an admirable specific capacitance as high as 1308 F g−1 at 10 mV s−1. The enhanced electrochemical performance is attributed to the low-temperature synergism of PANI and Co3O4. The specific morphology offers enough active sites for efficient electrolyte diffusion and buffers the structural deformation of PANI, thus improving the composite's stability. Also, the fabricated symmetric supercapacitor shows a stable energy storage performance − 99.6% coulombic efficiency over 5000 CD. The notable specific energy (250 Wh kg−1) at a specific power of 6.4 kW kg−1 at 1 A g−1 demonstrates the potential of Co3O4 anchored PANI binary composite electrode for future supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T.M. Gur, Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 11, 2696–2767 (2018)

    Article  Google Scholar 

  2. D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015)

    Article  CAS  Google Scholar 

  3. X. Luo, J. Wang, M. Dooner, J. Clarke, Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 137, 511–536 (2015)

    Article  Google Scholar 

  4. X. Ou, Y. Wang, S. Lei, W. Zhou, S. Sun, B. Cheng, Terephthalate-based cobalt hydroxide: a new electrode material for supercapacitors with ultrahigh capacitance. Dalton Trans. 47, 14958–14967 (2018)

    Article  CAS  Google Scholar 

  5. T.C. Bhagya, A. Krishnan, A. Rajan, B.R. Sreelekshmy, P. Jineesh, S.M.A. Shibli, Exploration and evaluation of proton source-assisted photocatalyst for hydrogen generation. Photochem. Photobiol. Sci. 18, 1716–1726 (2019)

    Article  CAS  Google Scholar 

  6. Y.K. Sun, Publishing electrochemical energy storage papers in ACS energy letters. ACS Energy Lett. 1, 771–772 (2016)

    Article  Google Scholar 

  7. L. Dong, C. Xu, Y. Li, C. Wu, B. Jiang, Q.H. Yang, Simultaneous production of high-performance flexible textile electrodes and fiber electrodes for wearable energy storage. Adv. Mater. 28, 1675–1681 (2016)

    Article  CAS  Google Scholar 

  8. I.I. Misnon, R. Jose, Charge storage in the PANI–α-MnO2 polymer–nanocomposite system. Materials Today 41, 513–519 (2021)

    Google Scholar 

  9. X. Zang, Graphene-based flexible energy storage devices, in Graphene. ed. by X. Zang (Elsevier, New York, 2018), pp. 175–199

    Chapter  Google Scholar 

  10. G. Zhang, L. Wang, X. Zhang, H. Shi, W. Zeng, H. Zhang, H. Duan, Porous ultrathin carbon nanobubbles formed carbon nanofiber webs for high-performance flexible supercapacitors. J. Mater. Chem. A 5, 14801–14810 (2017)

    Article  Google Scholar 

  11. H.T. Tan, W. Sun, L. Wang, Q. Yan, 2D transition metal oxides/hydroxides for energy-storage applications. Chem Nano Mat. 2, 562–577 (2016)

    CAS  Google Scholar 

  12. B.Y. Guan, S.L. Zhang, H.B. Wu, X.W.D. Lou, Metal–organic framework-assisted synthesis of compact Fe 2 O 3 nanotubes in Co 3 O 4 host with enhanced lithium storage properties. Nanomicro Lett. 10, 1–9 (2018)

    Google Scholar 

  13. A. Ehsani, E. Kowsari, M. DashtiNajafi, R. Safari, H. MohammadShiri, Influence of ionic liquid on pseudocapacitance performance of electrochemically synthesized conductive polymer: Electrochemical and theoretical investigation. J. Colloid Interface Sci. 500, 315–320 (2017)

    Article  CAS  Google Scholar 

  14. S. Gao, P. Zang, L. Dang, H. Xu, F. Shi, Z. Liu, Z. Lei, Extraordinarily high-rate capability of polyaniline nanorod arrays on graphene nanomesh. J. Power Sources 304, 111–118 (2016)

    Article  CAS  Google Scholar 

  15. C. Zhao, W. Zheng, X. Wang, H. Zhang, X. Cui, H. Wang, Ultrahigh capacitive performance from both Co (OH) 2/graphene electrode and K 3 Fe (CN) 6 electrolyte. Sci. Rep. 3, 1–6 (2013)

    Article  Google Scholar 

  16. I.S. Ike, I. Sigalas, S. Iyuke, Understanding performance limitation and suppression of leakage current or self-discharge in electrochemical capacitors: a review. Phys. Chem. Chem. Phys. 18, 661–680 (2015)

    Article  Google Scholar 

  17. A.M. Bryan, L.M. Santino, Y. Lu, S. Acharya, J.M. D’Arcy, Conducting polymers for pseudocapacitive energy storage. Chem. Mater. 28, 5989–5998 (2016)

    Article  CAS  Google Scholar 

  18. N. Parveen, M.O. Ansari, M.H. Cho, Route to high surface area, mesoporosity of polyaniline–titanium dioxide nanocomposites via one pot synthesis for energy storage applications. Ind. Eng. Chem. Res. 55, 116–124 (2016)

    Article  CAS  Google Scholar 

  19. P. Liu, J. Yan, Z. Guang, Y. Huang, X. Li, W. Huang, Recent advancements of polyaniline-based nanocomposites for supercapacitors. J. Power Sources 424, 108–130 (2019)

    Article  CAS  Google Scholar 

  20. A. Krishnan, T.C. Bhagya, S.M.A. Shibli, Facile synthesis of a versatile Ti/Ti-W@ PANI nanocomposite for sustainable hydrogen production under solar irradiation. Appl. Surf. Sci. 507, 145093 (2020)

    Article  CAS  Google Scholar 

  21. C. Zhao, X. Jia, K. Shu, C. Yu, G.G. Wallace, C. Wang, Conducting polymer composites for unconventional solid-state supercapacitors. J. Mater. Chem. A 8, 4677–4699 (2020)

    Article  CAS  Google Scholar 

  22. Z. Teng, Y. Hong, H. Yan, G. Xin, Y. Fei, C. Hongtao, L. Xinxin, W. Yuanbo, G. Xinrui, High-performance supercapacitors based on polyaniline nanowire arrays grown on three-dimensional graphene with small pore sizes. Dalton Trans. 49, 3304–3311 (2020)

    Article  Google Scholar 

  23. X. Liu, J. Wang, G. Yang, J. Wang, G. Yang, In situ growth of the Ni3V2O8@ PANI composite electrode for flexible and transparent symmetric supercapacitors. ACS Appl. Mater. Interfaces 10, 20688–20695 (2018)

    Article  CAS  Google Scholar 

  24. G. Wu, P. Tan, D. Wang, Z. Li, L. Peng, Y. Hu, C. Wang, High-performance supercapacitors based on electrochemical-induced vertical-aligned carbon nanotubes and polyaniline nanocomposite electrodes. Sci. Rep. 7, 43676 (2017)

    Article  Google Scholar 

  25. H. Sun, J. Zhu, D. Baumann, L. Peng, Y. Xu, I. Shakir, X. Duan, Hierarchical 3D electrodes for electrochemical energy storage. Nat. Rev. Mater. 4, 45–60 (2019)

    Article  Google Scholar 

  26. A.H. Riyas, S.M.A. Shibli, Assessment of the role of ζ-and δ-phases in ZrO2–Al2O3 composite based hot dip zinc galvanized coating by layer wise tuning. Appl. Surf. Sci. 481, 972–986 (2019)

    Article  CAS  Google Scholar 

  27. G. Lee, C.V. Varanasi, J. Liu, Effects of morphology and chemical doping on electrochemical properties of metal hydroxides in pseudocapacitors. Nanoscale 7, 3181–3188 (2015)

    Article  CAS  Google Scholar 

  28. H.B. Li, M.H. Yu, X.H. Lu, P. Liu, Y. Liang, J. Xiao, G.W. Yang, Amorphous cobalt hydroxide with superior pseudocapacitive performance. ACS Appl. Mater. Interfaces 6, 745–749 (2014)

    Article  CAS  Google Scholar 

  29. P. Adams, A. MonkMan, Characterization of high molecular weight polyaniline synthesized at −40 °C using a 025:1 mole ratio of persulfate oxidant to aniline. Synthetic Metals 87, 165–169 (1997)

    Article  CAS  Google Scholar 

  30. L. Ye, Z. Bao, Y. Zhao, L. Zhao, Flowery nickel–cobalt hydroxide via a solid–liquid sulphur ion grafting route and its application in hybrid supercapacitive storage. RSC Adv. 8, 23817–23824 (2018)

    Article  CAS  Google Scholar 

  31. P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014)

    Article  CAS  Google Scholar 

  32. H. Wang, J. Lin, Z.X. Shen, Polyaniline (PANi) based electrode materials for energy storage and conversion. J. Sci. Adv. Mater. Dev. 1, 225–255 (2016)

    Google Scholar 

  33. S. Wang, H. Xiao, Z.S. Wu, C. Sun, S. Zheng, J. Qin, X. Shi, All-solid-state high-energy planar hybrid micro-supercapacitors based on 2D VN nanosheets and Co (OH) 2 nanoflowers. NPJ 2D Mater. Appl. 2, 1–8 (2018)

    Article  Google Scholar 

  34. J. Wu, W. Zhou, F. Jiang, Y. Chang, Q. Zhou, D. Li, Y. Du, Three-dimensional porous carbon derived from polyindole hollow nanospheres for high-performance supercapacitor electrode. ACS Appl. Energy Mater. 1, 4572–4579 (2018)

    Article  CAS  Google Scholar 

  35. Z.D. Zujovic, M. Nieuwoudt, G.A. Bowmaker, P.A. Kilmartin, Nanostructures obtained in the oxidative polymerization of aniline: Effects of polarons. Polymer 54, 6363–6372 (2013)

    Article  CAS  Google Scholar 

  36. Z. Zhang, M. Wan, Y. Wei, Highly crystalline polyaniline nanostructures doped with dicarboxylic acids. Adv. Funct. Mater. 16, 1100–1104 (2006)

    Article  CAS  Google Scholar 

  37. S.B. Kulkarni, U.M. Patil, I. Shackery, J.S. Sohn, S. Lee, B. Park, S. Jun, High-performance supercapacitor electrode based on a polyaniline nanofibers/3D graphene framework as an efficient charge transporter. J. Mater. Chem. A 2, 4989–4998 (2014)

    Article  CAS  Google Scholar 

  38. H.D. Tran, J.M. D’Arcy, Y. Wang, P.J. Beltramo, V.A. Strong, R.B. Kaner, The oxidation of aniline to produce “polyaniline”: a process yielding many different nanoscale structures. J. Mater. Chem. 21, 3534–3550 (2011)

    Article  CAS  Google Scholar 

  39. T. Deng, W. Zhang, O. Arcelus, J.G. Kim, J. Carrasco, S.J. Yoo, T. Rojo, Atomic-level energy storage mechanism of cobalt hydroxide electrode for pseudocapacitors. Nat. Commun. 8, 1–9 (2017)

    Article  Google Scholar 

  40. Z. Huang, Y. Zhao, Y. Song, Y. Li, G. Wu, H. Tang, J. Zhao, Study on the oxidation process of cobalt hydroxide to cobalt oxides at low temperatures. RSC Adv. 6, 80059–80064 (2016)

    Article  Google Scholar 

  41. G. Giri, E. Verploegen, S.C.B. Mannsfeld, S. Atahan-Evrenk, D.H. Kim, S.Y. Lee, Z. Bao, Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 480, 504–508 (2011)

    Article  CAS  Google Scholar 

  42. X. Liu, J. Wang, G. Yang, In situ growth of the Ni3V2O8@ PANI composite electrode for flexible and transparent symmetric supercapacitors. ACS Appl. Mater. Interfaces 10, 20688–20695 (2018)

    Article  CAS  Google Scholar 

  43. J. Wang, G. Xiao, T. Zhang, S. Hao, Z. Jia, Y. Li, Fabrication of Co3O4/polyaniline-based carbon electrode for high-performance supercapacitor. J. Alloys Compd. 863, 158071 (2021)

    Article  CAS  Google Scholar 

  44. L. Huang, J. Jiang, L. Ai, Interlayer expansion of layered cobalt hydroxide nanobelts to highly improve oxygen evolution electrocatalysis. ACS Appl. Mater. Interfaces 9, 7059–7067 (2017)

    Article  CAS  Google Scholar 

  45. T.L. Wang, H.Y. Lin, P.H. Wang, M.H. Lee, W.C. Lin, C.H. Yang, Enhanced supercapacitor performance using electropolymerization of self-doped polyaniline on carbon film. Nanomaterials 8, 214 (2018)

    Article  Google Scholar 

  46. P.T. Babar, A.C. Lokhande, B.S. Pawar, M.G. Gang, E. Jo, C. Go, J.H. Kim, Electrocatalytic performance evaluation of cobalt hydroxide and cobalt oxide thin films for oxygen evolution reaction. Appl. Surf. Sci. 427, 253–259 (2018)

    Article  CAS  Google Scholar 

  47. R.B. Rakhi, W. Chen, D. Cha, H.N. Alshareef, Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett. 12, 2559–2567 (2012)

    Article  CAS  Google Scholar 

  48. B. Liu, D. Kong, J. Zhang, Y. Wang, T. Chen, C. Cheng, H.Y. Yang, 3D hierarchical Co 3 O 4@ Co 3 S 4 nanoarrays as cathode materials for asymmetric pseudocapacitors. J. Mater. Chem. A 4, 3287–3296 (2016)

    Article  CAS  Google Scholar 

  49. M.M. Larijani, E.J. Khamse, Z. Asadollahi, M. Asadi, Effect of aligned carbon nanotubes on electrical conductivity behaviour in polycarbonate matrix. Bull. Mater. Sci. 35, 305–311 (2012)

    Article  CAS  Google Scholar 

  50. I. Sapurina, J. Stejskal, The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polym. Int. 57, 1295–1325 (2008)

    Article  CAS  Google Scholar 

  51. P.C. Maity, M. Khandelwal, Synthesis time and temperature effect on polyaniline morphology and conductivity. J. Mater. Synth. Process. 1, 37 (2016)

    Google Scholar 

  52. M.A. Shishov, V.A. Moshnikov, I.Y. Sapurina, Self-organization of polyaniline during oxidative polymerization: formation of granular structure. Chem. Pap. 67, 909–918 (2013)

    Article  CAS  Google Scholar 

  53. J. Yang, H. Liu, N.W. Martens, R.L. Frost, Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs. J. Phys. Chem. C 114, 111–119 (2010)

    Article  CAS  Google Scholar 

  54. S. Dhibar, S. Sahoo, C.K. Das, Copper chloride-doped polyaniline/multiwalled carbon nanotubes nanocomposites: Superior electrode material for supercapacitor applications. Polym. Compos. 34, 517–525 (2013)

    Article  CAS  Google Scholar 

  55. T. Kwon, B.J. Sung, Effects of nanoparticles on the stability of polymer fibers. Phys. Rev. E 98, 42503 (2018)

    Article  CAS  Google Scholar 

  56. R. Wang, X. Yan, J. Lang, Z. Zheng, P. Zhang, A hybrid supercapacitor based on flower-like Co (OH) 2 and urchin-like VN electrode materials. J. Mater. Chem. A 2, 12724–12732 (2014)

    Article  CAS  Google Scholar 

  57. C. Zhou, Y. Zhang, Y. Li, J. Liu, Construction of high-capacitance 3D CoO@ polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett. 13, 2078–2085 (2013)

    Article  CAS  Google Scholar 

  58. P.R. Deshmukh, R.N. Bulakhe, S.N. Pusawale, S.D. Sartale, C.D. Lokhande, Polyaniline–RuO2 composite for high performance supercapacitors: chemical synthesis and properties. RSC Adv. 5, 28687–28695 (2015)

    Article  CAS  Google Scholar 

  59. S. Dhibar, P. Bhattacharya, G. Hatui, S. Sahoo, C.K. Das, Transition metal-doped polyaniline/single-walled carbon nanotubes nanocomposites: efficient electrode material for high performance supercapacitors. ACS Sustain. Chem. Eng. 2, 1114–1127 (2014)

    Article  CAS  Google Scholar 

  60. M. Toupin, T. Brousse, D. Bélanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184–3190 (2004)

    Article  CAS  Google Scholar 

  61. S.K. Simotwo, C. Delre, V. Kalra, Supercapacitor electrodes based on high-purity electrospun polyaniline and polyaniline–carbon nanotube nanofibers. ACS Appl. Mater. Interfaces 8, 21261–21269 (2016)

    Article  CAS  Google Scholar 

  62. G.R. Li, Z.P. Feng, J.H. Zhong, Z.L. Wang, Y.X. Tong, Electrochemical synthesis of polyaniline nanobelts with predominant electrochemical performances. Macromolecules 43, 2178–2183 (2010)

    Article  CAS  Google Scholar 

  63. N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95, 197–206 (2018)

    Article  CAS  Google Scholar 

  64. M. Sathiya, A.S. Prakash, K. Ramesha, J.M. TaraSCon, A.K. Shukla, V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J. Am. Chem. Soc. 133, 16291–16299 (2011)

    Article  CAS  Google Scholar 

  65. S. Ardizzone, G. Fregonara, S. Trasatti, “Inner” and “outer” active surface of RuO2 electrodes. Electrochim. Acta 35, 263–267 (1990)

    Article  CAS  Google Scholar 

  66. M. Majumder, R.B. Choudhary, A.K. Thakur, I. Karbhal, Impact of rare-earth metal oxide (Eu 2 O 3) on the electrochemical properties of a polypyrrole/CuO polymeric composite for supercapacitor applications. RSC Adv. 7, 20037–20048 (2017)

    Article  Google Scholar 

  67. K. Wang, H. Wu, Y. Meng, Z. Wei, Conducting polymer nanowire arrays for high performance supercapacitors. Small 10, 14–31 (2013)

    Article  Google Scholar 

  68. M.A. Sha, P.C. Meenu, V.S. Sumi, T.C. Bhagya, B.R. Sreelekshmy, S.M.A. Shibli, Tuning of electron transfer by Ni–P decoration on CeO2–TiO2 heterojunction for enhancement in photocatalytic hydrogen generation. Mater. Sci. Semicond. Process. 105, 104742 (2020)

    Article  Google Scholar 

  69. A.K. Singh, D. Sarkar, K. Karmakar, K. Mandal, G.G. Khan, High-performance supercapacitor electrode based on cobalt oxide–manganese dioxide–nickel oxide ternary 1D hybrid nanotubes. ACS Appl. Mater. Interfaces 8, 20786–20792 (2016)

    Article  CAS  Google Scholar 

  70. P. Dai, T. Yan, L. Hu, Z. Pang, Z. Bao, M. Wu, Z. Peng, Phase engineering of cobalt hydroxides using magnetic fields for enhanced supercapacitor performance. J. Mater. Chem. A 5, 19203–19209 (2017)

    Article  CAS  Google Scholar 

  71. Y. Ma, C. Hou, H. Zhang, Q. Zhang, H. Liu, S. Wu, Z. Guo, Three-dimensional core-shell Fe3O4/Polyaniline coaxial heterogeneous nanonets: preparation and high performance supercapacitor electrodes. Electrochim. Acta 315, 114–123 (2019)

    Article  CAS  Google Scholar 

  72. R. Zeng, Z. Li, L. Li, Y. Li, J. Huang, Y. Xiao, Y. Chen, Covalent connection of polyaniline with MoS2 nanosheets toward ultrahigh rate capability supercapacitors. ACS Sustain. Chem. Eng. 7, 11540–11549 (2019)

    Article  CAS  Google Scholar 

  73. Z. Wang, Q. Zhang, S. Long, Y. Luo, P. Yu, Z. Tan, H. Bai, Three-dimensional printing of polyaniline/reduced graphene oxide composite for high-performance planar supercapacitor. ACS Appl. Mater. Interfaces 10, 10437–10444 (2018)

    Article  CAS  Google Scholar 

  74. P. Wang, T.L. Wang, W.C. Lin, H.Y. Lin, M.H. Lee, Enhanced supercapacitor performance using electropolymerization of self-doped polyaniline on carbon film. Nanomaterials 8, 214 (2018)

    Article  Google Scholar 

  75. J. Cao, J. Li, L. Li, Y. Zhang, Y. Cai, D. Chen, W. Han, Mn-doped Ni/Co LDH nanosheets grown on the natural N-dispersed PANI-derived porous carbon template for a flexible asymmetric supercapacitor. ACS Sustain. Chem. Eng. 7, 10699–10707 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author [A R Athira] is thankful to the Department of Collegiate Education, Government of Kerala, for providing financial support through the “ASPIRE fellowship”; Centralized Common Instrumentation Facility (CCIF), Government College for Women, Thiruvananthapuram, Kerala, India; DST-FIST; CLIF, STIC and Department of Chemistry, University of Kerala, Thiruvananthapuram, Kerala, India for analyses support.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by [A R Athira]. The first draft of the manuscript was written by [A R Athira], and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. R. Athira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Research data policy and data availability statements

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athira, A.R., Bhagya, T.C., Riyas, A.H. et al. Design and fabrication of Co3O4 anchored PANI binary composite supercapacitors with enhanced electrochemical performance and stability. J Mater Sci: Mater Electron 33, 2829–2845 (2022). https://doi.org/10.1007/s10854-021-07486-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07486-x

Navigation