Skip to main content
Log in

Detection of ionizing radiation using Ag-doped ZnS nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Fluorescent Ag-doped ZnS nanoparticles have been prepared and used as scintillators for detecting ionizing radiation. Results demonstrate a linear relationship between emitted luminescence and the fluence of alpha particles. These results suggest that Ag-doped ZnS nanoparticles alone could be used as solid scintillators for specific environmental and medical applications. This study deals with the investigation of some physical characteristics of hydrothermal synthesized Ag-doped ZnS nanoparticles (NPs) using different techniques. XRD analysis clear that the prepared materials have a cubic phase. Direct energy gap has been investigated using Diffuse Reflectance Spectroscopy (DRS) and well-known Kubelka–Munk function (F(R)). The energy gap is equal to 3.47 eV. Also, for PL decay, the time constant observed for decay at 480 nm is 130.6 ns for fast component and 2611.4 ns for slow component. For studding the performance of the scintillation materials, a charged particle irradiation system was designed and constructed to examine the response of a commercial and native ZnS scintillator for alpha particles. Also, Pulse height spectrum of alpha particles and gamma rays has been investigated. Enhancing the PL emission of doped ZnS is one of the paper's achievements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Galkin, I. Rybalka, L. Sidelnikova, A. Voloshinovskii, H. Kraus, V. Mykhaylyk, Performance of ZnSe-based scintillators at low temperatures. J. Luminescence. 239, 118360 (2021). https://doi.org/10.1016/j.jlumin.2021.118360

    Article  CAS  Google Scholar 

  2. D. Rutstrom, L. Stand, B. Dryzhakov, M. Koschan, C.L. Melcher, M. Zhuravleva, Crystal growth and scintillation properties of new ytterbium-activated scintillators Cs4CaI6: Yb and Cs4SrI6:Yb. Opti. Mater. 110, 110536 (2020). https://doi.org/10.1016/j.optmat.2020.110536

    Article  CAS  Google Scholar 

  3. B. Grynyov, V.D. Ryzhikov, J.K. Kim, M. Jae, Scintillator crystals, radiation detectors instruments on their base (2004)

  4. M.E. Lecavalier, M. Goulet, C.N. Allen, L. Beaulieu, D. Larivière, Water-dispersable colloidal quantum dots for the detection of ionizing radiation. Chem. Commun. 49, 11629–11631 (2013). https://doi.org/10.1039/c3cc46209a

    Article  CAS  Google Scholar 

  5. D. Nakauchi, G. Okada, N. Kawaguchi, T. Yanagida, Luminescent and scintillation properties of Eu-doped (Ba, Sr)Al2O4 crystals. Opt. Mater. 87, 58–62 (2019). https://doi.org/10.1016/j.optmat.2018.05.076

    Article  CAS  Google Scholar 

  6. D.G. X.S.Fang, T.Y.Zhai, U.K. Zhai, G. Liang, L.M. Wu, Y. Bando, ZnS nanostructures: from synthesis to applications. Bing, Prog. Mater. Sci. 56. (2011) 175–287. https://www.bing.com/search?q=X.S.Fang%2C+T.Y.Zhai%2C+U.K.+Zhai%2C+G.+Liang%2C+L.M.+Wu%2C+Y.+Bando%2C+D.+Goldberg%2C+ZnS+nanostructures%3A+from+synthesis+to+applications.+Prog.+Mater.+Sci.+56+(2011)+175–287.&cvid=c1bccba5ba034927a73d2248b05c11f8&aqs=edge. Accessed 29 May 29 2021

  7. M. Bredol, J. Merikhi, ZnS precipitation: morphology control (1998)

  8. A.M. Abdalla, A.M. Ali, M. Al-jarallah, Characterization and radiation detection application of ZnS ( Ag ) nanoparticles. Physica B: Phys. Condens. Matter. 550, 235–243 (2018). https://doi.org/10.1016/j.physb.2018.09.024

    Article  CAS  Google Scholar 

  9. A.M. Abdalla, A.M. Ali, M. Al-Jarallah, G. Okada, N. Kawaguchi, T. Yanagida, Radon detection using alpha scintillation KACST cell. Nucl. Instrum. Methods Phys. Res., Sect. A 922, 84–90 (2019). https://doi.org/10.1016/j.nima.2018.12.078

    Article  CAS  Google Scholar 

  10. Y.Y.Y.C. Zhang, G.Y. Wang, X.Y. Hu, Q.F. Shi, T. Qiao, Phase-controlled synthesis of ZnS nanocrystallites by mild solvothermal decomposition of an air-stable single-source molecular precursor. J. Cryst. Growth. 284, 554–560 (2005)

    Article  CAS  Google Scholar 

  11. A. Tiwari, S.J. Dhoble, Stabilization of ZnS nanoparticles by polymeric matrices: syntheses, optical properties and recent applications. RSC Adv. 6, 64400–64420 (2016). https://doi.org/10.1039/c6ra13108e

    Article  CAS  Google Scholar 

  12. R. Ban, J. Li, J. Cao, P. Zhang, J. Zhang, J.J. Zhu, Highly luminescent glutathione-capped ZnS:Mn/ZnS core/shell doped quantum dots for targeted mannosyl groups expression on the cell surface. Anal. Methods 5, 5929–5937 (2013). https://doi.org/10.1039/c3ay41189c

    Article  CAS  Google Scholar 

  13. X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando, D. Golberg, ZnS nanostructures: from synthesis to applications. Prog. Mater Sci. 56, 175–287 (2011). https://doi.org/10.1016/j.pmatsci.2010.10.001

    Article  CAS  Google Scholar 

  14. ZnS and LiF based Neutron Detectors | Saint-Gobain Crystals, (n.d.). https://www.crystals.saint-gobain.com/products/zns-and-lif-based-neutron-detectors Accessed 29 May 2021.

  15. H.F. Lucas, Improved low-level alpha-scintillation counter for radon. Rev. Sci. Instrum. 28, 680–683 (1957). https://doi.org/10.1063/1.1715975

    Article  CAS  Google Scholar 

  16. L.G. Jacobsohn, K.B. Sprinkle, S.A. Roberts, C.J. Kucera, T.L. James, E.G. Yukihara, T.A. Devol, J. Ballato, Fluoride nanoscintillators. J. Nanomater. (2011). https://doi.org/10.1155/2011/523638

    Article  Google Scholar 

  17. V. Ramasamy, K. Praba, G. Murugadoss, Synthesis and study of optical properties of transition metals doped ZnS nanoparticles,. Spectrochimica Acta - Part A: Mol. Biomol. Spectrosc. 96, 963–971 (2012). https://doi.org/10.1016/j.saa.2012.07.125

    Article  CAS  Google Scholar 

  18. M. Nikl, Scintillation detectors for x-rays. Measure. Sci. Technol. (2006). https://doi.org/10.1088/0957-0233/17/4/R01

    Article  Google Scholar 

  19. C.W.E. Van Eijk, Neutron PSDs for the next generation of spallation neutron sources, in Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, North-Holland, pp. 383–390 (2002). https://doi.org/10.1016/S0168-9002(01)01836-8

  20. E. Rutherford, The scattering of α and β particles by matter and the structure of the atom, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of. Science 21, 669–688 (1911). https://doi.org/10.1080/14786440508637080

    Article  CAS  Google Scholar 

  21. M.I. L.Ozawa, Cathode ray tube phosphors, Chem. Rev. 103 (n.d.), pp. 3835–856.

  22. V.B. Mikhailik, S. Henry, M. Horn, H. Kraus, A. Lynch, M. Pipe, Investigation of luminescence and scintillation properties of a ZnS-Ag/6LiF scintillator in the 7–295 K temperature range. J. Lumin. 134, 63–66 (2013). https://doi.org/10.1016/j.jlumin.2012.09.013

    Article  CAS  Google Scholar 

  23. M.L. Roush, M.A. Wilson, W.F. Hornyak, Pulse shape discrimination. Nucl. Inst. Methods 31, 112–124 (1964). https://doi.org/10.1016/0029-554X(64)90333-7

    Article  CAS  Google Scholar 

  24. F. Maddalena, A. Xie, Arramel, M.E. Witkowski, M. Makowski, B. Mahler, W. Drozdowski, T. Mariyappan, S.V. Springham, P. Coquet, C. Dujardin, M.D. Birowosuto, C. Dang, Effect of commensurate lithium doping on the scintillation of two-dimensional perovskite crystals. J. Mater. Chem. 9, 2504–2512 (2021). https://doi.org/10.1039/D0TC05647B

    Article  CAS  Google Scholar 

  25. T.T. Quynh Hoa, L. Van Vu, T.D. Canh, N.N. Long, Preparation of ZnS nanoparticles by hydrothermal method. J. Phys. Conf. Series (2009). https://doi.org/10.1088/1742-6596/187/1/012081

    Article  Google Scholar 

  26. L. Ozawa, L. Xinjia, Screening of color phosphor powders on CRT faceplates. J. Soc. Inform. Display 6, 285 (1998). https://doi.org/10.1889/1.1985254

    Article  Google Scholar 

  27. D.C.M. X. Jin, T. Ireland , C. Gibbons, D.J. Barber, J. Silver, A. Vecht, G. Fern, P. Trwoga, Control of Y2O3:Eu spherical particle phosphor size, assembly properties, and performance for FED and HDTV. J. Electrochem. 4654–4658 (1999). https://www.bing.com/search?q=Control+of+Y2O3%3AEu+spherical+particle+phosphor+size%2C+assembly+properties%2C+and+performance+for+FED+and+HDTV%2C+J.+Electrochem.+146+(1999)4654–4658.&cvid=375b6ad47ec84750b32db9683e2c0398&aqs=edge..69i57.28763j0j4&FORM=ANA. Accessed 29 May 2021

  28. Saint-Gobain crystals | innovative materials and applications solutions, (n.d.). https://www.crystals.saint-gobain.com/. Accessed 29 May 2021

  29. Z. Ul Abideen, F. Teng, Enhanced photochemical activity and stability of ZnS by a simple alkaline treatment approach. CrystEngComm. 20, 7866–7879 (2018). https://doi.org/10.1039/c8ce01417e

    Article  CAS  Google Scholar 

  30. A. Jaffres, D. Bregiroux, D. Reekie, R. Shears, Morphological control of ZnS nanopowders by different capping molecules. Mater. Lett. 209, 539–542 (2017). https://doi.org/10.1016/j.matlet.2017.08.102

    Article  CAS  Google Scholar 

  31. M.K. Naskar, A. Patra, M. Chatterjee, Understanding the role of surfactants on the preparation of ZnS nanocrystals. J. Colloid Interface Sci. 297, 271–275 (2006). https://doi.org/10.1016/j.jcis.2005.10.057

    Article  CAS  Google Scholar 

  32. B.D. Cullity, Elements of x-ray diffraction. J. Chem. Educ. 34, A178 (1957)

    Article  Google Scholar 

  33. P. Norouzzadeh, K. Mabhouti, M.M. Golzan, R. Naderali, Investigation of structural, morphological and optical characteristics of Mn substituted Al-doped ZnO NPs: a Urbach energy and Kramers-Kronig study. Optik 204, 164227 (2020). https://doi.org/10.1016/j.ijleo.2020.164227

    Article  CAS  Google Scholar 

  34. N. Fifere, A. Airinei, D. Timpu, A. Rotaru, L. Sacarescu, L. Ursu, New insights into structural and magnetic properties of Ce doped ZnO nanoparticles. J. Alloy. Compd. 757, 60–69 (2018). https://doi.org/10.1016/j.jallcom.2018.05.031

    Article  CAS  Google Scholar 

  35. B. Poornaprakash, D. Amaranatha Reddy, G. Murali, N. Madhusudhana Rao, R.P. Vijayalakshmi, B.K. Reddy, Composition dependent room temperature ferromagnetism and PL intensity of cobalt doped ZnS nanoparticles. J. Alloys Compd. 577, 79–85 (2013). https://doi.org/10.1016/j.jallcom.2013.04.106

    Article  CAS  Google Scholar 

  36. M. Hamel, B. Sabot, C. Dutsov, G.H.V. Bertrand, K. Mitev, Tuning the decay time of liquid scintillators. J. Lumin. 235, 118021 (2021). https://doi.org/10.1016/j.jlumin.2021.118021

    Article  CAS  Google Scholar 

  37. Radon Monitors | Pylon Electronics-Radon, (n.d.). https://pylonelectronics-radon.com/monitors/. Accessed 29 May 2021

Download references

Acknowledgements

The authors would like to acknowledge the financial support of both the Ministry of Education, Kingdom of Saudi Arabia and the technical support of the Promising Center for Sensors and Electronic Devices (PCSED) at Najran University for this research through a Grant (PCSED-014-18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman M. Abdalla.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdalla, A.M., Ali, A.M., Kawaguchi, N. et al. Detection of ionizing radiation using Ag-doped ZnS nanoparticles. J Mater Sci: Mater Electron 33, 2450–2460 (2022). https://doi.org/10.1007/s10854-021-07451-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07451-8

Navigation