Skip to main content
Log in

Fabrication of 0.94NBT–0.06BT textured ceramics using plate-like NBT templates and their electrical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of crystallographic texture on the properties of 0.94(Na0.5Bi0.5TiO3)–0.06BaTiO3 (0.94NBT–0.06BT) ceramics were investigated in this study. The optimized rectangular plate-like Na0.5Bi0.5TiO3 (NBT) templates synthesized by a three-step molten salt method were used for the texturing. Dimensions of the major surfaces of the templates which were parallel to the (001) planes were measured as 8.4 µm × 10 µm (length × width) and 1 µm thickness on the average. The green textured ceramics were fabricated by tape casting method and then sintered. All ceramics were crystallized in pure perovskite structure and the degree of grain orientation was calculated as f = 91%. Brick wall-like microstructure for the textured NBT–BT ceramics with average grain size of ~ 12 µm was obtained by scanning electron microscopy. Depolarization temperature (Td) and temperature of maximum (Tm) of the dielectric permittivity were determined as 119 °C and 341 °C at 10 kHz for the textured ceramic, respectively. The value of maximum dielectric permittivity of textured ceramics was measured as εrmax ~ 5409 at 10 kHz. The high field (@50 kV/cm) piezoelectric \(d_{33}^{\ast}\) value was increased from 239 to 412 pm/V by texturing of the 0.94NBT–0.06BT ceramics. NBT template addition and texture development led to a decrease in AC conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Authors agreed that raw data would remain confidential and would not be shared.

References

  1. Q.C. Xu, A. Dogan, J. Tressler, S. Yoshikawa, R.E. Newnham, Ferroelectrics 160, 1 (1994)

    Google Scholar 

  2. M.Y. Kaya, E. Mensur-Alkoy, A. Gurbuz, M. Oner, S. Alkoy, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65, 7 (2018)

    Google Scholar 

  3. J.F. Tressler, S. Alkoy, R.E. Newnham, J. Electroceram. 2, 4 (1998)

    Google Scholar 

  4. S. Roundy, P.K. Wright, J. Rabaey, Comput. Commun. 26, 11 (2003)

    Google Scholar 

  5. T. Mashimo, S. Toyama, I.E.E.E. Tran, Ultrason. Ferroelectr. Freq. Control 56, 1 (2009)

    Google Scholar 

  6. B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971), p. 7

    Google Scholar 

  7. J. Rödel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92, 6 (2009)

    Google Scholar 

  8. L. Egerton, D.M. Dillon, J. Am. Ceram. Soc. 42, 9 (1959)

    Google Scholar 

  9. G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, N.N. Krainik, Sov. Phys. Solid State 2, 11 (1961)

    Google Scholar 

  10. C.F. Buhrer, J. Chem. Phys. 36, 3 (1962)

    Google Scholar 

  11. W. Liu, X. Ren, Phys. Rev. Lett. 103, 25 (2009)

    Google Scholar 

  12. M.S. Hagiyev, I.H. Ismailzade, A.K. Abiyev, Ferroelectrics 56, 1 (1984)

    Google Scholar 

  13. J. Suchanicz, K. Roleder, A. Kania, J. Hańaderek, Ferroelectrics 77, 1 (1988)

    Google Scholar 

  14. J.A. Zvirgzds, P.P. Kapostin, J.V. Zvirgzde, T.V. Kruzina, Ferroelectrics 40, 1 (1982)

    Google Scholar 

  15. P.K. Panda, J. Mater. Sci. 44, 19 (2009)

    Google Scholar 

  16. S. Gorfman, P.A. Thomas, J. Appl. Crystallogr. 43, 6 (2010)

    Google Scholar 

  17. T. Takenaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30(Part 1, 9B), 2236 (1991)

  18. K. Sakata, Y. Masuda, Ferroelectrics 7, 1 (1974)

    Google Scholar 

  19. T. Takenaka, T. Okuda, K. Takegahara, Ferroelectrics 196, 1 (1997)

    Google Scholar 

  20. A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Jpn. J. Appl. Phys. 38(Part 1, 9B), 5564 (1999)

  21. C. Ma, X. Tan, E. Dul’kin, M. Roth, J. Appl. Phys. 108, 10 (2010)

    Google Scholar 

  22. R.R. McQuade, M.R. Dolgos, J. Solid State Chem. 242, 2 (2016)

    Google Scholar 

  23. Y.-M. Chiang, G.W. Farrey, A.N. Soukhojak, Appl. Phys. Lett. 73, 25 (1998)

    Google Scholar 

  24. W. Ge, H. Liu, X. Zhao, B. Fang, X. Li, F. Wang, D. Zhou, P. Yu, X. Pan, D. Lin, H. Luo, J. Phys. D Appl. Phys. 41, 11 (2008)

    Google Scholar 

  25. G.L. Messing, S. Trolier-McKinstry, E.M. Sabolsky, C. Duran, S. Kwon, B. Brahmaroutu, P. Park, H. Yilmaz, P.W. Rehrig, K.B. Eitel, E. Suvaci, M. Seabaugh, K.S. Oh, Crit. Rev. Solid State Mater. Sci. 29, 2 (2004)

    Google Scholar 

  26. A. Berksoy-Yavuz, E. Mensur-Alkoy, J. Mater. Sci. Mater. Electron. 29, 15 (2018)

    Google Scholar 

  27. R. Hong, F. Gao, J. Liu, Y. Yao, C. Tian, J. Mater. Sci. 43, 18 (2008)

    Google Scholar 

  28. Y.K. Yan, H.P. Zhou, W. Zhao, D. Liu, J. Electroceram. 21, 1 (2008)

    CAS  Google Scholar 

  29. H. Yilmaz, S. Trolier-Mckinstry, G.L. Messing, J. Electroceram. 11, 3 (2003)

    Google Scholar 

  30. S. Su, R. ZuO, J. Alloys Compd. 525, 22 (2012)

    Google Scholar 

  31. S. Dursun, E. Mensur-Alkoy, A. Sabuncu, A. Berksoy-Yavuz, M.A. Gulgun, S. Alkoy, J. Am. Ceram. Soc. 100, 3 (2016)

    Google Scholar 

  32. D. Maurya, Y. Zhou, Y. Yan, S. Priya, J. Mater. Chem. C. 1, 2102 (2013)

    CAS  Google Scholar 

  33. W. Zhao, J. Ya, Y. Xin, L. E, D. Zhao, H. Zhou, J. Am. Ceram. Soc. 92, 7 (2009)

    Google Scholar 

  34. A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications, 2nd edn. (Wiley, Cornwall, 2003), p. 85

    Google Scholar 

  35. M. Coşkun, O. Polat, F.M. Coşkun, Z. Durmuş, M. Cağlar, A. Türüt, RSC Adv. 8, 4634 (2018)

    Google Scholar 

  36. Y.-M. Li, W. Chen, J. Zhou, Q. Xu, X.-Y. Gu, R.-H. Liao, Phys. B:Condens. Matter. 365, 1–4 (2005)

    Google Scholar 

  37. J.T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 3 (1990)

    Google Scholar 

  38. E.M. Alkoy, A. Berksoy-Yavuz, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 59, 10 (2012)

    Google Scholar 

  39. F.K. Lotgering, J. Inorg. Nucl. Chem. 9, 2 (1959)

    Google Scholar 

  40. A. Berksoy-Yavuz, E. Mensur-Alkoy, E. Gozutok, S. Dursun, H. Yilmaz, S. Alkoy, J. Mater. Sci. Mater. Electron. 30, 20 (2019)

    Google Scholar 

  41. IEEE Standard on Piezoelectricity, ANSI/IEEE Std 176-1987 (1988)

  42. W. Zhao, H. Zhou, Y. Yan, D. Liu, J. Am. Ceram. Soc. 91, 4 (2008)

    Google Scholar 

  43. H. Simons, J. Daniels, W. Jo, R. Dittmer, A. Studer, M. Avdeev, J. Rödel, M. Hoffman, Appl. Phys. Lett. 98, 8 (2011)

    Google Scholar 

  44. A. Hussain, A. Maqbool, R.A. Malik, J.U. Rahman, T.-K. Song, W.-J. Kim, M.-H. Kim, Ceram. Int. 41, S26 (2015)

    CAS  Google Scholar 

  45. Y. Chang, J. Wu, Y. Sun, S. Zhang, X. Wang, B. Yang, G.L. Messing, W. Cao, Appl. Phys. Lett. 107, 8 (2015)

    Google Scholar 

  46. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, J. Rödel, J. Electroceram. 29, 1 (2012)

    Google Scholar 

  47. W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H.-J. Kleebe, A.J. Bell, J. Rödel, J. Appl. Phys. 110, 7 (2011)

    Google Scholar 

  48. J. Kling, W. Jo, R. Dittmer, S. Schaab, H.-J. Kleebe, J. Am. Ceram. Soc. 96, 10 (2013)

    Google Scholar 

  49. E. Mensur-Alkoy, M.B. Okatan, E. Aydin, Y. Kilic, B. Misirlioglu, S. Alkoy, J. Appl. Phys. 128, 8 (2020)

    Google Scholar 

  50. F. Weyland, M. Acosta, M. Vögler, Y. Ehara, J. Rödel, N. Novak, J. Mater. Sci. 53, 13 (2018)

    Google Scholar 

  51. K. Uchino, S. Nomura, Ferroelectrics 44, 1 (1982)

    Google Scholar 

  52. Y. Ehara, N. Novak, A. Ayrikyan, P.T. Geiger, K.G. Webber, J. Appl. Phys. 120, 17 (2016)

    Google Scholar 

  53. Lily, K. Kumari, K. Prasad, R.N.P Choudhary, J. Alloys Compd. 453, 1–2 (2008)

  54. R.E. Newham, in Properties of Materials: Anisotropy, Symmetry Structure, 1st edn. (Oxford Univeristy Press, New York, 2005), p. 188

    Google Scholar 

  55. C.S. Devi, M.B. Suresh, G.S. Kumar, G. Prasad, Ion. 22, 12 (2016)

    Google Scholar 

  56. E. Mensur-Alkoy, A. Berksoy-Yavuz, S. Alkoy, Ferroelectrics 447, 1 (2013)

    Google Scholar 

  57. Y. Wang, Y. Pu, P. Zhang, J. Alloys Compd. 653, 596 (2015)

    CAS  Google Scholar 

  58. H.S. Mohanty, A. Kumar, B. Sahoo, P.K. Kurliya, D.K. Pradhan, J. Mater. Sci. Mater. Electron. 29, 8 (2018)

    Google Scholar 

  59. S. Lanfredi, A.C.M. Rodrigues, J. Appl. Phys. 86, 4 (1999)

    Google Scholar 

  60. A. Mishra, D.K. Khatua, G.D. Adhikary, N. Kumar, A. Upadhyay, B. Mahale, S. Saha, B. Majumdar, A. Senyshyn, R. Ranjan, J Mater Sci. Mater Electron. 32, 12 (2021)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Aligül Büyükaksoy for assisting in the impedance spectroscopy measurements.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

AB-Y: Conceptualization, project administration, formal analysis, methodology, investigation, visualization, writing-original draft. MYK: formal analysis, visualization, writing-original draft, writing-review and editing. TA: investigation. GC: investigation. EM: resources, supervision, conceptualization, project administration, writing-review and editing.

Corresponding author

Correspondence to Ayse Berksoy-Yavuz.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berksoy-Yavuz, A., Kaya, M.Y., Avcı, T. et al. Fabrication of 0.94NBT–0.06BT textured ceramics using plate-like NBT templates and their electrical properties. J Mater Sci: Mater Electron 33, 2336–2349 (2022). https://doi.org/10.1007/s10854-021-07433-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07433-w

Navigation