Skip to main content
Log in

Plasmonic performance, electrical and optical properties of titanium nitride nanostructured thin films for optoelectronic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

TiN films with different thicknesses (17.9–102.8 nm) were prepared using rf magnetron sputtering to study the effect thickness on the plasmonic, electrical, and optical properties. X-ray diffraction revealed the amorphous-like structure for thinner films with thicknesses lower than 50.3 nm, whereas polycrystalline of face-centered cubic TiN structure was observed for thicker films. Scanning electron microscopy observations revealed rounded nano-crystallites morphology for TiN films. The EDAX depicted oxygen in the TiN films which attributed to the residual oxygen inside the sputtering chamber and to the partial surface oxidation resulted from the exposure to atmospheric air. As the thickness increased from 17.9 to 102.8 nm, the carrier concentration increases from 1.47 × 1022 to 3.51 × 1022 cm−3 and the carrier mobility increased from 0.091 to 0.489 cm2/V.s, which resulted in a resistivity decrease from 4.65 × 10–3 to 3.64 × 10–4 Ω cm. Two absorption bands around 250 and 1000 nm were observed. The band around 1000 nm was ascribed to the localized surface plasmon resonance (LSPR) and increased with increasing the film thickness. The optical band gap and refractive index values decreased monotonically with increasing the film thickness. It is also inferred that the thickness has a strong influence on the values of real and imaginary parts of the dielectric function. Applying various figures of merit indicated that the prepared TiN films are probably not practical for LSPR device fabrication however they are probably suitable for practical transformation optics and superlens device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Naldoni, U. Guler, Z. Wang, M. Marelli, F. Malara, X. Meng, L.V. Besteiro, A.O. Govorov, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Adv. Opt. Mater. 5, 1601031 (2017)

    Article  Google Scholar 

  2. C. Gao, Y. Ran, Q. Guo, T. Wang, H. Lu, Z. Jiang, Z. Wang, Surf. Interfaces 24, 101024 (2021)

    Article  CAS  Google Scholar 

  3. S. Yick, A.T. Murdock, P.J. Martin, D.F. Kennedy, T. Maschmeyer, A. Bendavid, Nanoscale 10, 7566–7574 (2018)

    Article  CAS  Google Scholar 

  4. Y. Yang, T. Wang, T. Yao, G. Li, Y. Sun, X. Cao, L. Ma, S. Peng, J. Alloys Compod. 815, 152209 (2020)

    Article  CAS  Google Scholar 

  5. P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D.V. Bellas, Ch. Lekka, E. Lidorikis, Mater. Sci. Eng. R 123, 1–55 (2018)

    Article  Google Scholar 

  6. U. Guler, V.M. Shalaev, A. Boltasseva, Mater. Today 18, 227–237 (2015)

    Article  CAS  Google Scholar 

  7. N. Venugopal, V.S. Gerasimov, A.E. Ershov, S.V. Karpov, S.P. Polyutov, Opt. Mater. 72, 397–402 (2017)

    Article  CAS  Google Scholar 

  8. Y. Wu, X. Li, H. Zhao, F. Yao, J. Cao, Z. Chen, X. Huang, D. Wang, Q. Yang, Chem. Eng. J. 418, 129296 (2021)

    Article  CAS  Google Scholar 

  9. K. Hansen, M. Cardona, A. Dutta, C. Yang, Materials 13, 1058 (2020)

    Article  CAS  Google Scholar 

  10. X. Wang, J. Jian, S. Diaz-Amaya, C.E. Kumah, P. Lu, J. Huang, D.G. Lim, V.G. Pol, J.P. Youngblood, A. Boltasseva, L.A. Stanciu, D.M. O’Carroll, X. Zhang, H. Wang, Nanoscale Adv. 1, 1045 (2019)

    Article  CAS  Google Scholar 

  11. H. Hamamura, H. Komiyama, Y. Shimogaki, Jap. J. Appl. Phys. 40, 1517–1521 (2001)

    Article  CAS  Google Scholar 

  12. W.-P. Guo, R. Mishra, C.-W. Cheng, B.-H. Wu, L.-J. Chen, M.-T. Lin, S. Gwo, ACS Photonics 6, 1848–1854 (2019)

    Article  CAS  Google Scholar 

  13. L. Berthod, V. Gâté, M. Bichotte, M. Langlet, F. Vocanson, C. Jimenez, D. Jamon, I. Verrier, C. Veillas, O. Parriaux, Y. Jourlin, Opt. Mater. Express 6, 2508 (2016)

    Article  CAS  Google Scholar 

  14. Z.-Y. Yang, Y.-H. Chen, B.-H. Liao, K.-P. Chen, Opt. Mater. Express 6, 540–551 (2016)

    Article  CAS  Google Scholar 

  15. C.-C. Chang, J. Nogan, Z.-P. Yang, W.J.M. Kort-Kamp, W. Ross, T.S. Luk, D.A.R. Dalvit, A.K. Azad, H.-T. Chen, Sci. Rep. 9, 15287 (2019)

    Article  Google Scholar 

  16. D. Shah, H. Reddy, N. Kinsey, V.M. Shalaev, A. Boltasseva, Adv. Optical Mater. 5, 1700065 (2017)

    Article  Google Scholar 

  17. Q. Ma, X. Shi, L. Bi, J. Li, Q. Zhou, B. Zhu, Superlattice Microst. 151, 106815 (2021)

    Article  CAS  Google Scholar 

  18. E. Valkonen, C.-G. Ribbing, J.-E. Sundgren, Appl. Opt. 25, 3624–3630 (1986)

    Article  CAS  Google Scholar 

  19. N. Kinsey, A.A. Syed, D. Courtwright, C. DeVault, C.E. Bonner, V.I. Gavrilenko, V.M. Shalaev, D.J. Hagan, E.W. Van Stryland, A. Boltasseva, Opt. Mater. Express 5, 2395 (2015)

    Article  CAS  Google Scholar 

  20. M. Roy, N.R. Mucha, S. Fialkova, D. Kumar, AIP Adv. 11, 045204 (2021)

    Article  CAS  Google Scholar 

  21. Y.L. Jeyachandran, S.K. Narayandass, Trends Biomater. Artif. Organs 24, 90 (2010)

    Google Scholar 

  22. P. Patsalas, N. Kalfagiannis, S. Kassavetis, Materials 8, 3128–3154 (2015)

    Article  CAS  Google Scholar 

  23. A. Walsh, C.R.A. Catlow, K.H.L. Zhang, R.G. Egdell, Phys. Rev. B 83, 161202 (2011)

    Article  Google Scholar 

  24. E. Ajenifuja, A.P.I. Popoola, O.M. Popoola, J. Mater. Res. Technol. 8, 377–384 (2019)

    Article  CAS  Google Scholar 

  25. A.M. Kia, J. Speulmanns, S. Bonhardt, J. Emara, K. Kühnel, N. Haufe, W. Weinreich, Appl. Surf. Sci. 564, 150457 (2021)

    Article  Google Scholar 

  26. Y. Jiang, N. Bahlawane, J. Alloys Compd. 485, L52–L55 (2009)

    Article  CAS  Google Scholar 

  27. S.H. Mohamed, N.M.A. Hadia, M.A. Awad, M.I. Hafez, Appl. Phys. A 125, 587 (2019)

    Article  Google Scholar 

  28. Z.H. Dughaish, S.H. Mohamed, Indian J. Phys. 87, 741–746 (2013)

    Article  CAS  Google Scholar 

  29. A. El-Denglawey, M.M. Makhlouf, M. Dongol, Results Phys. 10, 714–720 (2018)

    Article  Google Scholar 

  30. B.D. Cullity, Elements of X-Ray Diffraction, 2nd edn. (AddisonWesley, Reading, 1979), p. 102

    Google Scholar 

  31. P. Patsalas, C. Gravalidis, S. Logothetidis, J. Appl. Phys. 96, 6234–6246 (2004)

    Article  CAS  Google Scholar 

  32. L. Mascaretti, T. Barman, B.R. Bricchi, F. Münz, A.L. Bassi, S. Kment, A. Naldoni, Appl. Surf. Sci. 554, 149543 (2021)

    Article  CAS  Google Scholar 

  33. S. Podder, A.R. Pal, Opt. Mater. 97, 109379 (2019)

    Article  CAS  Google Scholar 

  34. M. Nahar, N. Rocklein, M. Andreas, G. Funston, D. Goodner, J. Vac. Sci. Technol. A 35, 01B144 (2017)

    Article  Google Scholar 

  35. N. Martin, O. Banakh, A.M.E. Santo, S. Springer, R. Sanjines, J. Takadoum, F. Levy, Appl. Surf. Sci. 185, 123 (2001)

    Article  CAS  Google Scholar 

  36. N. Martin, R. Sanjines, J. Takadoum, F. Levy, Surf. Coat. Technol. 142–144, 615 (2001)

    Article  Google Scholar 

  37. S.H. Mohamed, H. Zhao, H. Romanus, F.M. El-Hossary, M. Abo El-Kassem, M.A. Awad, M. Rabia, Y. Lei, Mater. Sci. Semicond. Process. 105, 104704 (2020)

    Article  CAS  Google Scholar 

  38. S.H. Mohamed, O. Kappertz, J.M. Ngaruiya, T. Niemeier, R. Drese, R. Detemple, M.M. Wakkad, M. Wuttig, Phys. Stat. Sol. 201, 90–102 (2004)

    Article  CAS  Google Scholar 

  39. F. Magnus, A.S. Ingason, S. Olafsson, J.T. Gudmundsson, IEEE Electron Device Lett. 33, 1045 (2012)

    Article  CAS  Google Scholar 

  40. N.D. Madsen, M. Hausladen, S. Chiriaev, P. Johannesen, Z.E. Fabrim, P.F.P. Fichtner, J. Kjelstrup-Hansen, J. Microelectromech. Syst. 25, 683 (2016)

    Article  CAS  Google Scholar 

  41. B. Yoo, K.-J. Kim, Y.H.N. Kim, K. Kim, M.J. Ko, W.M. Kim, N.-G. Park, J. Mater. Chem. 21, 3077 (2011)

    Article  CAS  Google Scholar 

  42. W. Tsai, M. Delfino, J.A. Fair, D. Hodul, J. Appl. Phys. 73, 4462 (1993)

    Article  CAS  Google Scholar 

  43. J. Zang, T.P. Chen Zang, X.D. Li, Y.C. Liu, Y. Liu, H.Y. Yang, Opt. Mater. Express 6, 2422 (2016)

    Article  Google Scholar 

  44. S.H. Mohamed, N.M.A. Hadia, M.A. Awad, E.R. Shaaban, Acta Phys. Pol. A 135, 420 (2019)

    Article  CAS  Google Scholar 

  45. M.N. Solovana, V.V. Brusa, E.V. Maistruka, P.D. Maryanchuk, Inorg. Mater. 50, 40–45 (2014)

    Article  Google Scholar 

  46. A. Kavitha, R. Kannan, P. Sreedhara Reddy, S. Rajashabala, J. Mater. Sci. 27, 10427–10434 (2016)

    CAS  Google Scholar 

  47. Z. Xie, X. Liu, P. Zhan, W. Wang, Z. Zhang, AIP Adv. 3, 062129 (2013)

    Article  Google Scholar 

  48. P. Prathap, N. Revathi, Y.P. Venkata Subbaiah, K.T. Ramakrishna Reddy, J. Phys. Condens. Matter. 20, 035205 (2008)

    Article  Google Scholar 

  49. S.H. Mohamed, M. El-Hagary, M. Emam-Ismail, J. Phys. D Appl. Phys. 43, 075401 (2010)

    Article  Google Scholar 

  50. M. Dai, W. Guo, X. Liu, M. Zhang, Y. Wang, L.F. Wei, G.C. Hilton, J. Hubmayr, J. Ullom, J. Gao, M.R. Vissers, J. Low Temp. Phys. 194, 361–369 (2019)

    Article  CAS  Google Scholar 

  51. P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Laser Photonics Rev. 4, 795–808 (2010)

    Article  CAS  Google Scholar 

  52. F. Wang, Y.R. Shen, Phys. Rev. Lett. 97, 206806 (2006)

    Article  Google Scholar 

  53. M.D. Arnold, M.G. Blaber, Opt. Exp. 17, 3835–3847 (2009)

    Article  CAS  Google Scholar 

  54. U. Guler, G.V. Naik, A. Boltasseva, V.M. Shalaev, A.V. Kildishev, Appl. Phys. B 107, 285–291 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This Project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under Grant No. (G: 355-306-1442). The authors, therefore, acknowledge with thanks DSR for technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Mohamed.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest involved in the current work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Rahman, A.M.A., Mohamed, S.H., Khan, M.T. et al. Plasmonic performance, electrical and optical properties of titanium nitride nanostructured thin films for optoelectronic applications. J Mater Sci: Mater Electron 32, 28204–28213 (2021). https://doi.org/10.1007/s10854-021-07197-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07197-3

Navigation