Skip to main content
Log in

Dielectric performance and physical characterization of (Mg0.6Zn0.4)0.95Ni0.05TiO3 ceramics with ATiO3 (A = Ca, Sr) additions for microwave applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The dielectric performance, physical characterization, and microwave applications of the (1 − x)(Mg0.6Zn0.4)0.95Ni0.05TiO3 − xCaTiO3 or xSrTiO3 fabricated by solid-state reaction method were investigated. The phase composition and microstructure characteristics of these two mixtures were analyzed by XRD, EDS, and SEM to demonstrate two-phase systems. The dielectric performance of the mixed ceramic systems strongly controlled by the quantities of CaTiO3 and SrTiO3 additions and near-zero temperature coefficient of resonant frequency was obtained by appropriate stoichiometry. The mixture of 0.92(Mg0.6Zn0.4)0.95Ni0.05TiO3 − 0.08CaTiO3 ceramic sintered at 1200 °C for 4 h revealed the dielectric constant of 25.0, the quality factor of 49,000 (GHz), and the temperature coefficient of + 5.0 (ppm/°C). For applications in microwave wireless devices such as filters, antennas, and so on, the 0.92(Mg0.6Zn0.4)0.95Ni0.05TiO3 − 0.08CaTiO3 ceramics is proposed as a potential candidate for substrate material. Moreover, we designed and simulated a hairpin band-pass filter using the proposed dielectric mixture to demonstrate the practicality of a wireless communication device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Yu, T. Luo, J. Liu, Adv. Appl. Ceram. 118, 98–105 (2019)

    Article  CAS  Google Scholar 

  2. A. Aljaafari, A. Sedky, Crystals. 10, 681 (2020)

    Article  CAS  Google Scholar 

  3. B. Bor, L. Heilmann, B. Domènech, M. Kampferbeck, T. Vossmeyer, Molecules. 25, 4790 (2020)

    Article  CAS  Google Scholar 

  4. P. Palmero, Nanomaterials. 5, 656–696 (2015)

    Article  CAS  Google Scholar 

  5. A. Naeem, A. Ullah, Y. Iqbal, T. Mahmood, A. Mahmood, Z.A. Razaa, J. Alloys Compd. 672, 298–306 (2016)

    Article  CAS  Google Scholar 

  6. A.E. Freitas, T.M. Manhabosco, R.J.C. Batista, Materials. 13, 386 (2020)

    Article  CAS  Google Scholar 

  7. B. Itaalit, M. Mouyane, J. Bernard, M. Womes, D. Houivet, Appl. Sci. 6, 2 (2016)

    Article  Google Scholar 

  8. S. Zhai, P. Liu, Z. Fu, J. Mater. Sci. Mater. Electron. 29, 1298–1303 (2018)

    Article  CAS  Google Scholar 

  9. S. Yuan, L. Gan, F. Ning, S.An, Ceram. Int. 44, 20566–20569 (2018)

    Article  CAS  Google Scholar 

  10. B. Tang, Q. Xiang, Z. Fang, X. Zhang, Z. Xiong, H. Lid, C. Yuan, S. Zhang, Ceram. Int. 45, 11484–11490 (2019)

    Article  CAS  Google Scholar 

  11. J.H. Sohn, Y. Inaguma, S.O. Yoon, Jpn. J. Appl. Phys. 33, 5466 (1994)

    Article  CAS  Google Scholar 

  12. C.L. Huang, C.L. Pan, Mater. Res. Bull. 37, 2483–2490 (2002)

    Article  CAS  Google Scholar 

  13. P. Gogoi, L.R. Singh, D. Pamu, J. Mater. Sci. Mater. Electron. 28, 11712–11721 (2017)

    Article  CAS  Google Scholar 

  14. K. Wakino, Ferroelectrics. 91, 69–86 (1989)

    Article  CAS  Google Scholar 

  15. A. Ullah, Y. Iqbal, T. Mahmood, A. Mahmood, A.l. Naeem, M. Humayun, Ceram. Int. 41, 15089–15096 (2015)

    Article  CAS  Google Scholar 

  16. C.H. Shen, C.L. Pan, S.H. Lin, Molecules 25, 5988 (2020)

    Article  CAS  Google Scholar 

  17. C.H. Shen, C.L. Pan, S.H. Lin, C.C. Ho, Appl. Sci. 11, 2952 (2021)

    Article  CAS  Google Scholar 

  18. L. Li, S. Li, X. Lyu, H. Sun, J. Ye, Mater. Lett. 163, 51–53 (2016)

    Article  CAS  Google Scholar 

  19. A. Manana, Z. Ullaha, A.S. Ahmadb, A. Ullahc, D.F. Khana, A. Hussaind, M.U. Khane, J. Adv. Ceram. 7, 72–78 (2018)

    Article  Google Scholar 

  20. C.H. Shen, C.L. Huang, J. Alloys Compd. 472, 451–455 (2009)

    Article  CAS  Google Scholar 

  21. C.L. Huang, Y.-B. Chen, M.-L. Lee, J. Alloys Compd. 469, 357–361 (2009)

    Article  CAS  Google Scholar 

  22. C.L. Huang, S.S. Liu, Mater. Letters. 62, 3773–3775 (2008)

    Article  CAS  Google Scholar 

  23. C.L. Huang, J.J. Wang, J. Am. Ceram. 80, 1885–1888 (1997)

    Article  Google Scholar 

  24. C. Chen, Z. Peng, L. Xie, K. Bi, X. Fu, J. Mater. Sci.: Mater. Electron. 31, 13696–13703 (2020)

    CAS  Google Scholar 

  25. P.H. Sun, T. Nakamura, Y.J. Shan, Y. Inaguma, M. Itoh, T. Kitamura, Jpn, J. Appl. Phys. 37, 5625 (1998)

    Article  CAS  Google Scholar 

  26. W.E. Courtney, IEEE Trans. Microwave Theory Tech. 18, 476–485 (1970)

    Article  Google Scholar 

  27. R.D. Shannon, C.D. Prewitt, Acta Crystallogr. 25, 925–946 (1969)

    Article  CAS  Google Scholar 

  28. P. Gogoi, P. Sharma, D. Pamu, J. Mater. Sci. Mater. Electron. 27, 9052–9096 (2016)

    Article  CAS  Google Scholar 

  29. V.L. Gurevich, A.K. Tagantsev, J. Mater. Sci. 29, 830 (1994)

    Article  Google Scholar 

  30. Y. Nakagoshi, J. Sato, M. Morimoto, Y. Suzuki, Ceram. Int. 42, 9139–9144 (2016)

    Article  CAS  Google Scholar 

  31. I.T. Kim, Y. Kim, S.J. Chung, Jpn. J. Appl. Phys. 34, 4096 (1995)

    Article  CAS  Google Scholar 

  32. S.J. Penn, N.M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, K. Schrapel, J. Am. Ceram. 80, 1885–1888 (1997)

    Article  CAS  Google Scholar 

  33. E.S. Kim, K.H. Yoon, J. Mater. Sci. 29, 830 (1994)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their appreciation for this study’s financial support by the Ministry of Science and Technology, Taiwan, under grants MOST 108-2221-E-224-050 and 109-2622-E-224-013, the industrial cooperation provided by LiveStrong Optoelectronics under contract no. Yuntech 110-185. The authors acknowledge the technical support from the Advanced Instrumentation Center of National Yunlin University of Science and Technology. Yuntech Language Editing Service Center performed this English edition of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Hung Lin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, SH., Shen, CH. & Ho, CC. Dielectric performance and physical characterization of (Mg0.6Zn0.4)0.95Ni0.05TiO3 ceramics with ATiO3 (A = Ca, Sr) additions for microwave applications. J Mater Sci: Mater Electron 32, 27913–27922 (2021). https://doi.org/10.1007/s10854-021-07172-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07172-y

Navigation