Skip to main content
Log in

Impact of graphite impurities on the structure and optical properties of the sodium borate oxide glass

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

For the carbon-based glass fabrication/manufacture process, different amounts of pure graphite powder were added up to 100 wt.% of sodium tetraborate oxide (the weight of one mole of the sodium tetraborate is 381.372 g/mol) and then melted at 950 °C for 2 h before fast quenching in the air at RT. The resulted solids were examined by the XRD and SEM techniques, which confirmed the amorphous natures for studied samples. FTIR spectroscopy showed that some C-atoms are shared in the glass network as C–O and CO2. In contrast, the UV–Vis showed that the increase in the graphite contents/impurities causes a red shift in the value of the optical edge and the value of Fermi energy. Also, the increase of the graphite impurities causes a decrease in the bandgap values of both direct and indirect electronic transitions. Both the values of Urbach energy and the metallization indicated an increase in the crystallinity degree as the graphite content increase. A graphite-based glass is a promising material for wide-scale applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Terczyńska-Madej et al., Coordination and valence state of transition metal ions in alkali-borate glasses. J. Opt. Mater. 33(12), 1984–1988 (2011). https://doi.org/10.1016/j.optmat.2011.03.046

    Article  CAS  Google Scholar 

  2. K. Annapoorani et al., “Investigations on structural and luminescence behavior of Er3+ doped lithium zinc borate glasses for lasers and optical amplifier applications). J. Non Cryst. Solids 447, 273–282 (2016). https://doi.org/10.1016/j.jnoncrysol.2016.06.021

    Article  CAS  Google Scholar 

  3. M. Prokic, Lithium borate solid TL detectors. J. Radiat. Measure. 33, 393–396 (2001). https://doi.org/10.1016/S1350-4487(01)00039-7

    Article  CAS  Google Scholar 

  4. I.N. Ogorodnikov, N.E. Poryvai, Thermoluminescence kinetics of lithium borate crystals. J. Lumin. 132, 1318–1324 (2012). https://doi.org/10.1016/j.jlumin.2012.01.009

    Article  CAS  Google Scholar 

  5. S. Tanabe, Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication. J. C. R. Chim. 5, 815–824 (2002)

    Article  CAS  Google Scholar 

  6. P.V. Reddy et al., Optical and thermoluminescence properties of R2O-RF-B2O3 glass systems doped with MnO. J. Non-Cryst. Solids 351, 3752–3759 (2005). https://doi.org/10.1016/j.jnoncrysol.2005.08.039

    Article  CAS  Google Scholar 

  7. M.N. Gururaja, A. Hari Rao, A review on recent applications and future prospectus of hybrid composites. Int. J. Soft Comput. Eng. (IJSCE) 1(6), 352–355 (2012)

    Google Scholar 

  8. R.T.D. Prabhakaran et al., Flexural properties of hybrid natural composite-micromechanics and experimental assessment. In: Proceedings of 3rdAsian Conference on Mechanics of Functional Materials and Structures (ACMFMS), C M (2012), vol. 1, pp. 469–472, Indian Institute of Technology, New Delhi

  9. T.D. Jagannatha, G. Harish, Mechanical properties of carbon/glass fiber reinforced epoxy hybrid polymer composites. Int. J. Mech. Eng. Rob. Res. 4(2), 2015. ISSN 2278-0149. www.ijmerr.com

  10. V. Singh et al., Graphene based materials: past, present and future. J. Prog. Mater. Sci. 56, 1178–1271 (2011). https://doi.org/10.1016/j.pmatsci.2011.03.003

    Article  CAS  Google Scholar 

  11. A. Geim, K. Novoselov, The rise of graphene. J. Nat. Mater. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849

    Article  CAS  Google Scholar 

  12. K.S. Novoselov et al., Electric field effect in atomically thin carbon films. J. Sci. 306, 666–669 (2004). https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  13. R.D. Dreyer et al., The chemistry of graphene ocide. J. Chem. Rev. Soc. 39, 228–240 (2010). https://doi.org/10.1039/B917103G

    Article  CAS  Google Scholar 

  14. G. Wang et al., The chemistry of graphene oxide. J. Chem. (2015). https://doi.org/10.1007/978-3-319-15500-5_3

    Article  Google Scholar 

  15. G. Wang et al., Graphene nanosheets for enhanced lithium storage in lithium ion batteries. J. Carbon 47, 1359–1364 (2009). https://doi.org/10.1016/j.carbon.2009.03.053

    Article  CAS  Google Scholar 

  16. X. Li et al., Chemically derived, ultrasmooth graphene nanoribbon semiconductors. J. Sci. 319, 1229–1232 (2008). https://doi.org/10.1126/science.1150878

    Article  CAS  Google Scholar 

  17. P. Blake et al., Graphene-based liquid crystal device. J. Nano Lett. 8, 1704–1708 (2008). https://doi.org/10.1021/nl080649i

    Article  Google Scholar 

  18. K.S. Novoselov et al., Room-temperature quantum hall effect in graphene. J. Sci. 315, 1379–1384 (2007). https://doi.org/10.1126/science.1137201

    Article  CAS  Google Scholar 

  19. K.I. Bolotin et al., Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008). https://doi.org/10.1016/j.ssc.2008.02.024

    Article  CAS  Google Scholar 

  20. X. Li et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. J. Sci. 324, 1312–1314 (2009). https://doi.org/10.1126/science.1171245

    Article  CAS  Google Scholar 

  21. K.S. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. J. Nature 457, 706–710 (2009). https://doi.org/10.1038/nature07719

    Article  CAS  Google Scholar 

  22. S. Bae et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. J. Nat. Nanotechnol. 5, 574–578 (2010). https://doi.org/10.1038/nnano.2010.132

    Article  CAS  Google Scholar 

  23. R.V. Barde, S.A. Waghuley, Preparation and electrical conductivity of novel vanadate borate glass system containing graphene oxide. J. Non-Cryst. Solids 376, 117–125 (2013). https://doi.org/10.1016/j.jnoncrysol.2013.05.034

    Article  CAS  Google Scholar 

  24. Z.Q. Li et al., X-ray diffraction patterns of graphite and turbostratic carbon. J. Carbon 45, 1686–1695 (2007). https://doi.org/10.1016/j.carbon.2007.03.038

    Article  CAS  Google Scholar 

  25. F.Y. Ban et al., Graphene oxide and its electrochemical performance. J. Electrochem. Sci., 7 (2012) 4345 – 4351. http://psasir.upm.edu.my/id/eprint/25228

  26. A.K. Mishra, S. Ramaprabhu, Carbon dioxide adsorption in graphene sheets. J. AIP Adv. (2011). https://doi.org/10.1063/1.3638178

    Article  Google Scholar 

  27. R. Siburian et al., Effect of N-doped graphene for properties of Pt/N-doped graphene catalyst. J. Chem. Select. 2, 1188–1195 (2017). https://doi.org/10.1002/slct.201601561

    Article  CAS  Google Scholar 

  28. R. Siburian et al., New route to synthesize of graphene nano sheets. J. Chem. 34(1), 82–187 (2018). https://doi.org/10.13005/ojc/340120

    Article  CAS  Google Scholar 

  29. S. Thirumaran, N. Karthikeyan, Structural elucidation of some borate glass specimen by employing ultrasonic and spectroscopic studies. J Ceram (2013). https://doi.org/10.1155/2013/485317

    Article  Google Scholar 

  30. A. Campopiano et al., Glass fiber exposure assessment during ceiling installation by European Standard EN 689: study of airborne fiber distribution. J. Atmos. Pollut. Res. 3(2012), 192–198 (2012). https://doi.org/10.5094/APR.2012.020

    Article  CAS  Google Scholar 

  31. M. Pal et al., Structural characterization of borate glasses containing zinc and manganese oxides. J. Modern Phys. 2, 1062–1066 (2011). https://doi.org/10.4236/jmp.2011.29129

    Article  CAS  Google Scholar 

  32. U. Kara et al., Scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy and nuclear radiation shielding properties of [α-Fe3+O(OH)]-doped lithium borate glasses. J. Appl. Phys. A 126, 506 (2020). https://doi.org/10.1007/s00339-020-03683-3

    Article  CAS  Google Scholar 

  33. S. Thirumaran, A. Priyadharsini, Structural elucidation of borate glasses by spectroscopic and SEM studies. Asian J Chem 30(6), 1221–1227 (2018)

    Article  CAS  Google Scholar 

  34. Y. Cheng et al., Structure and crystallization kinetics of PbO B2O3 glasses. J. Ceram. Int. 33(7), 1341–1347 (2007). https://doi.org/10.1016/j.ceramint.2006.04.025

    Article  CAS  Google Scholar 

  35. D. Stentz et al., Analysis of the structure of lead borosilicate glasses using laser ionization time of flight mass spectroscopy. J. Non-Cryst. Solids 293, 416–421 (2001). https://doi.org/10.1016/S0022-3093(01)00837-7

    Article  Google Scholar 

  36. A. Aronne et al., FTIR and DTA study of structural transformations and crystallization in BaO B2O3 TiO2 glasses. Phys. Chem. Glasses 40(2), 63–68 (1999)

    CAS  Google Scholar 

  37. J. Iglesias et al., On the tannic acid interaction with metallic iron. J. Hyperfine Interact. 134, 109 (2001). https://doi.org/10.1023/A:1013838600599

    Article  CAS  Google Scholar 

  38. A.H. Verhoef, H.W. den Hartog, Infrared spectroscopy of network and cation dynamics in binary and mixed alkali borate glasses. J. Non-Crystalline Solids 182(3), 221–234 (1995)

    Article  Google Scholar 

  39. K.H.S. Shaaban et al., Physical and structural properties of lithium borate glasses containing MoO3. Silicon (2017). https://doi.org/10.1007/s12633-016-9519-4

    Article  Google Scholar 

  40. I. Kashif, A. Ratep, Role of copper metal or oxide on physical properties of lithium borate glass. J. Mol. Struct. 1102, 1–5 (2015). https://doi.org/10.1016/J.MOLSTRUC.2015.07.070

    Article  CAS  Google Scholar 

  41. Y.B. Saddeek et al., Optical and structural evaluation of bismuth alumina-borate glasses doped with different amounts of (Y2O3). J. Non-Crystalline Solids 454, 13–18 (2016). https://doi.org/10.1016/j.jnoncrysol.2016.10.023

    Article  CAS  Google Scholar 

  42. R.M.M. Morsi et al., “Effect of alkaline earth metal oxides on the dielectric, structural and physico-chemical properties of lithium–zinc–lead-borates. J. Mater. Sci.: Mater. Electron. 27, 4147–4156 (2016). https://doi.org/10.1007/s10854-016-4276-0

    Article  CAS  Google Scholar 

  43. S.C. Colak, Role of titanium ions on the optical and thermal properties of zinc borate glass doped with TiO. J. Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 58(1), 41–48 (2017). https://doi.org/10.13036/17533562.57.2.067

    Article  Google Scholar 

  44. M. Hosam et al., Influence of the gradual increase of TiO2-impurities on the Optics. Optik (2021). https://doi.org/10.1016/j.ijleo.2021.167543

    Article  Google Scholar 

  45. M. Ghamari, B. Mirhad, Composition dependence of spectroscopic properties and transparency of SiO2-TiO2–Na2O glass in 200–1100 nm. J. Iran. J. Mater. Sci. Eng. (2012). https://doi.org/10.4191/kcers.2017.54.2.01

    Article  Google Scholar 

  46. H.M. Gomaa et al., Optical and structural studies of some zinc calcium borate glasses for optoelectronic device applications. J. Mater Sci.: Mater Electron 32, 9392–9399 (2021). https://doi.org/10.1007/s10854-021-05602-5

    Article  CAS  Google Scholar 

  47. M. Nasr et al., Novel thermochromic (TC) and electrochromic (EC) characteristics of the V4O7 liquid crystal for LCDs and versatile optoelectronic applications. J. Mol. Liq. 330, 115620 (2021). https://doi.org/10.1016/j.molliq.2021.115620

    Article  CAS  Google Scholar 

  48. H.M. Gomaa et al., The influence of both Zn2+ and Ca2+ on linear and nonlinear optical parameters of some bismuth borate-based glasses. J. Appl. Phys. A 126, 391 (2020). https://doi.org/10.1007/s00339-020-03582-7

    Article  CAS  Google Scholar 

  49. S.M. Elkatlawy et al., Structural properties, linear, and non-linear optical parameters of ternary Se80Te(20–x) In chalcogenide glass systems. J. Bol. Soc. Esp. Cerám. Vidr. (2020). https://doi.org/10.1016/j.bsecv.2020.09.007

    Article  Google Scholar 

  50. M.Y. Hassaan et al., Optical properties of bismuth borate glasses doped with zinc and calcium oxides. J. Mater. Appl. 9(1), 46–54 (2020). https://doi.org/10.32732/jma.2020.9.1.46

    Article  Google Scholar 

  51. A.S. Hassanien, I. Sharma, Optical properties of quaternary a-Ge15-x Sbx Te35 thermally evaporated thin-films: refractive index dispersion and single oscillator parameters. J. Optik 200, 163415 (2020). https://doi.org/10.1016/j.ijleo.2019.163415

    Article  CAS  Google Scholar 

  52. M.K. El-Mansy et al., Effect of exchange of Bi3+ by Nb5+ on the structural and optical properties of some (BBiNb)2O7CaO oxide glasses. J. Non-crystalline Solids 485(1), 42–46 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.01.036

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the research groups program under Grant Number R.G.P.2/39/40.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosam M. Gomaa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomaa, H.M., Saudi, H.A., Yahia, I.S. et al. Impact of graphite impurities on the structure and optical properties of the sodium borate oxide glass. J Mater Sci: Mater Electron 32, 27553–27563 (2021). https://doi.org/10.1007/s10854-021-07130-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07130-8

Navigation