Skip to main content
Log in

Synthesis, thermal and dielectric investigations of PVDF/PVP/Co0.6Zn0.4Fe2O4 polymer nanocomposite films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study aims to prepare and examine the structure, thermal and dielectric properties of Polyvinylidene fluoride (PVDF)/Polyvinylpyrrolidone (PVP)/Co0.6Zn0.4Fe2O4 nanocomposite films. The data were collected via X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and dielectric measurements. The XRD spectrum of the Co0.6Zn0.4Fe2O4 ferrite sample showed a spinel crystal structure with an average size 15 nm. In the X-ray diffraction spectra of the PVDF-Co0.6Zn0.4Fe2O4 polymer nanocomposites, β-phase diffraction peak appeared at 2θ =  0.2°. SEM images of all the nanocomposite films exhibited a homogeneous distribution of nanostructured Co0.6Zn0.4Fe2O4. FTIR spectra depicted the absorption bands for α, β and γ-phase of PVDF as well as the carbonyl group of PVP. From TGA analysis, the activation energy for thermal decomposition decreased from 285.73 to 248.97 kJ/mol.K. Besides, there is a decrease in both ΔH and ΔG values with an increase in the Co0.6Zn0.4Fe2O4 concentration. The static dielectric constant (εs), the high-frequency dielectric constant (ε) and the dielectric strength (Δε) for these nanocomposites were lower than the pure PVDF/PVP film. The DC conductivity values were 2.27 × 10−14, 1.63 × 10−8, 2.04 × 10−10 and 1.61 × 10−8 S/cm for 0.0, 1.0, 3.0 and 5.0 wt% of Co0.6Zn0.4Fe2O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.Q. Tan, The search for enhanced dielectric strength of polymer-based dielectrics: a focused review on polymer nanocomposites. J. Appl. Polym. Sci. 137(33), 49379 (2020)

    Article  CAS  Google Scholar 

  2. Z. He, F. Rault, M. Lewandowski, E. Mohsenzadeh, F. Salaün, Electrospun PVDF nanofibers for piezoelectric applications: a review of the influence of electrospinning parameters on the β phase and crystallinity enhancement. Polymers 13(2), 174 (2021)

    Article  CAS  Google Scholar 

  3. Q. Chen, Y. Shen, S. Zhang, Q.M. Zhang, Polymer-based dielectrics with high energy storage density. Annu. Rev. Mater. Sci. 45, 433–458 (2015)

    Article  CAS  Google Scholar 

  4. V.K. Thakur, R.K. Gupta, Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem. Rev. 116(7), 4260–4317 (2016)

    Article  CAS  Google Scholar 

  5. A. Mayeen, M.S. Kala, S. Sunija, D. Rouxel, R.N. Bhowmik, S. Thomas, N. Kalarikkal, Flexible dopamine-functionalized BaTiO3/BaTiZrO3/BaZrO3-PVDF ferroelectric nanofibers for electrical energy storage. J. Alloy. Compd. 837, 155492 (2020)

    Article  CAS  Google Scholar 

  6. F. Gheorghiu, R. Stanculescu, L. Curecheriu, E. Brunengo, P. Stagnaro, V. Tiron, L. Mitoseriu, PVDF-ferrite composites with dual magneto-piezoelectric response for flexible electronics applications: synthesis and functional properties. J. Mater. Sci. 55(9), 3926–3939 (2020)

    Article  CAS  Google Scholar 

  7. Z.M. Dang, H.Y. Wang, Y.H. Zhang, J.Q. Qi, Morphology and dielectric property of homogenous BaTiO3/PVDF nanocomposites prepared via the natural adsorption action of nanosized BaTiO3. Macromol. Rapid Commun. 26(14), 1185–1189 (2005)

    Article  CAS  Google Scholar 

  8. H. Kim, J. Johnson, L.A. Chavez, C.A.G. Rosales, T.L.B. Tseng, Y. Lin, Enhanced dielectric properties of three phase dielectric MWCNTs/BaTiO3/PVDF nanocomposites for energy storage using fused deposition modeling 3D printing. Ceram. Int. 44(8), 9037–9044 (2018)

    Article  CAS  Google Scholar 

  9. A.B. da Silva, M. Arjmand, U. Sundararaj, R.E.S. Bretas, Novel composites of copper nanowire/PVDF with superior dielectric properties. Polymer 55(1), 226–234 (2014)

    Article  CAS  Google Scholar 

  10. H. Wang, Q. Fu, J. Luo, D. Zhao, L. Luo, W. Li, Three-phase Fe3O4/MWNT/PVDF nanocomposites with high dielectric constant for embedded capacitor. Appl. Phys. Lett. 110(24), 242902 (2017)

    Article  CAS  Google Scholar 

  11. C. Behera, R.N.P. Choudhary, P.R. Das, Development of Ni-ferrite-based PVDF nanomultiferroics. J. Electron. Mater. 46(10), 6009–6022 (2017)

    Article  CAS  Google Scholar 

  12. P.I. Devi, K. Ramachandran, Dielectric studies on hybridised PVDF–ZnO nanocomposites. J. Exp. Nanosci. 6(3), 281–293 (2011)

    Article  CAS  Google Scholar 

  13. H. Rekik, Z. Ghallabi, I. Royaud, M. Arous, G. Seytre, G. Boiteux, A. Kallel, Dielectric relaxation behaviour in semi-crystalline polyvinylidene fluoride (PVDF)/TiO2 nanocomposites. Composites B 45(1), 1199–1206 (2013)

    Article  CAS  Google Scholar 

  14. M.S. Hossain, M.B. Alam, M. Shahjahan, M.H.A. Begum, M.M. Hossain, S. Islam, … M. Al-Mamun, Synthesis, structural investigation, dielectric and magnetic properties of Zn2+-doped cobalt ferrite by the sol–gel technique. Journal of Advanced Dielectrics 8(04), 1850030 (2018)

    Article  CAS  Google Scholar 

  15. T.A. Taha, S. Elrabaie, M.T. Attia, Green synthesis, structural, magnetic, and dielectric characterization of NiZnFe2O4/C nanocomposite. J. Mater. Sci.: Mater. Electron. 29(21), 18493–18501 (2018)

    CAS  Google Scholar 

  16. M.M. Rashad, D.A. Rayan, M. El-Gendy, E. Kholy, T.A. Taha, Structural and magnetic characteristics of ferroxplana Co2Y nanoferrites synthesized via two chemical routes. J. Supercond. Novel Magn. 31(12), 4191–4198 (2018)

    Article  CAS  Google Scholar 

  17. M.H. Mahmoud, T.A. Taha, FTIR and Mössbauer spectroscopy investigations of Ag/FexAl2–xO3 nanocomposites. J. Electron. Mater. 48(11), 7396–7403 (2019)

    Article  CAS  Google Scholar 

  18. T.A. Taha, M.M. El-Molla, Green simple preparation of LiNiO2 nanopowder for lithium ion battery. J. Mater. Res. Technol. 9(4), 7955–7960 (2020)

    Article  CAS  Google Scholar 

  19. S. Chen, K. Yao, F.E.H. Tay, C.L. Liow, Ferroelectric poly (vinylidene fluoride) thin films on Si substrate with the β phase promoted by hydrated magnesium nitrate. J. Appl. Phys. 102(10), 104108 (2007)

    Article  CAS  Google Scholar 

  20. W. Xia, Z. Zhang, PVDF-based dielectric polymers and their applications in electronic materials. IET Nanodielectr. 1(1), 17–31 (2018)

    Article  Google Scholar 

  21. R. Gregorio Jr., Determination of the α, β, and γ crystalline phases of poly (vinylidene fluoride) films prepared at different conditions. J. Appl. Polym. Sci. 100(4), 3272–3279 (2006)

    Article  CAS  Google Scholar 

  22. I.S. Rocha, L.H.C. Mattoso, L.F. Malmonge, R. Gregorio Jr., Effect of low contents of a polyaniline derivative on the crystallization and electrical properties of blends with PVDF. J. Polym. Sci., Part B: Polym. Phys. 37(12), 1219–1224 (1999)

    Article  CAS  Google Scholar 

  23. T. Boccaccio, A. Bottino, G. Capannelli, P. Piaggio, Characterization of PVDF membranes by vibrational spectroscopy. J. Membr. Sci. 210(2), 315–329 (2002)

    Article  CAS  Google Scholar 

  24. Z. Guo, X. Xu, Y. Xiang, S. Lu, New anhydrous proton exchange membranes for high-temperature fuel cells based on PVDF–PVP blended polymers. Journal of Materials Chemistry A 3(1), 148–155 (2015)

    Article  CAS  Google Scholar 

  25. T.A. Taha, M.H. Mahmoud, H.H. Hamdeh, Development, thermal and dielectric investigations of PVDF-Y2O3 polymer nanocomposite films. J. Polym. Res. 28(5), 1–9 (2021)

    Article  CAS  Google Scholar 

  26. L. Vlaev, N. Nedelchev, K. Gyurova, M. Zagorcheva, A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J. Anal. Appl. Pyrol. 81(2), 253–262 (2008)

    Article  CAS  Google Scholar 

  27. T. Sasaki, K. Hiraki, A. Athirah, K. Matsuta, N. Takeuchi, Glass transition at the polystyrene/polyethylene glycol interface observed via contact angle measurements. Polym. J. 51(5), 481–488 (2019)

    Article  CAS  Google Scholar 

  28. T.A. Taha, S.A. Saad, Processing, thermal and dielectric investigations of polyester nanocomposites based on nano-CoFe2O4. Mater. Chem. Phys. 255, 123574 (2020)

    Article  CAS  Google Scholar 

  29. T.A. Taha, N. Hendawy, S. El-Rabaie, A. Esmat, M.K. El-Mansy, Fluorescence and dielectric spectroscopy identification of polyvinyl chloride/NiO nanocomposites. J. Mol. Struct. 1212, 128162 (2020)

    Article  CAS  Google Scholar 

  30. T.A. Taha, A. Hassona, S. Elrabaie, M.T. Attia, Dielectric spectroscopy of PVA-Ni0.5Zn0.5Fe2O4 polymer nanocomposite films. J. Asian. Ceam. Soc. 8(4), 1076–1082 (2020)

    Article  Google Scholar 

  31. T.A. Taha, S. Elrabaie, M.T. Attia, Exploring the structural, thermal and dielectric properties of PVA/Ni0.5Zn0.5Fe2O4 composites. J. Electron. Mater. 48(10), 6797–6806 (2019)

    Article  CAS  Google Scholar 

  32. A.S. Abouhaswa, T.A. Taha, Tailoring the optical and dielectric properties of PVC/CuO nanocomposites. Polym. Bull. 77, 6005–6016 (2019)

    Article  CAS  Google Scholar 

  33. T.A. Taha, A.A. Azab, Thermal, optical, and dielectric investigations of PVC/La0.95Bi0.05FeO3 nanocomposites. J. Mol. Struct. 1178, 39–44 (2019)

    Article  CAS  Google Scholar 

  34. R. Wang, C. Xie, S. Luo, B. Gou, H. Xu, L. Zeng, The influence mechanism of nanoparticles on the dielectric properties of epoxy resin. RSC Adv. 9(34), 19648–19656 (2019)

    Article  CAS  Google Scholar 

  35. Z. Wang, J. Fan, X. Guo, J. Ji, Z. Sun, Enhanced permittivity of negative permittivity middle-layer sandwich polymer matrix composites through conductive filling with flake MAX phase ceramics. RSC Adv. 10(45), 27025–27032 (2020)

    Article  CAS  Google Scholar 

  36. M. Chawla, N. Shekhawat, S. Aggarwal, A. Sharma, K.G.M. Nair, Cole-cole analysis and electrical conduction mechanism of N + implanted polycarbonate. J. Appl. Phys. 115(18), 184104 (2014)

    Article  CAS  Google Scholar 

  37. A. Kahouli, A. Sylvestre, F. Jomni, B. Yangui, J. Legrand, Ac-conductivity and dielectric relaxations above glass transition temperature for parylene-C thin films. Appl. Phys. A 106(4), 909–913 (2012)

    Article  CAS  Google Scholar 

  38. N. Chandel, M.M. Imran, N. Mehta, Comprehensive studies of temperature and frequency dependent dielectric and ac conducting parameters in third generation multi-component glasses. RSC Adv. 8(45), 25468–25479 (2018)

    Article  CAS  Google Scholar 

  39. T.A. Taha, M.A.A. Alzara, Synthesis, thermal and dielectric performance of PVA-SrTiO3 polymer nanocomposites. J. Mol. Struct. 1238, 130401 (2021)

    Article  CAS  Google Scholar 

  40. R.A. Sutar, L. Kumari, M.V. Murugendrappa, Room temperature ac conductivity, dielectric properties and impedance analysis of polypyrrole-zinc cobalt oxide (PPy/ZCO) composites. Physica B 573, 36–44 (2019)

    Article  CAS  Google Scholar 

  41. M. Sadiq, A. Arya, J. Ali, N.P. Singh, A.L. Sharma, Electrical conductivity and dielectric properties of solid polymer nanocomposite films: effect of BaTiO3 nanofiller. Mater. Today 32, 476–482 (2020)

  42. M.M. Abutalib, A. Rajeh, Structural, thermal, optical and conductivity studies of Co/ZnO nanoparticles doped CMC polymer for solid state battery applications. Polym. Test. 91, 106803 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at Jouf University for funding this work through research Grant No. (DSR2020-02-409).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Taha.

Ethics declarations

Conflict of interest

No conflict of interest exists in the submission of this manuscript, and manuscript is approved by all authors for publication. The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taha, T.A., El-Nasser, K.S. Synthesis, thermal and dielectric investigations of PVDF/PVP/Co0.6Zn0.4Fe2O4 polymer nanocomposite films. J Mater Sci: Mater Electron 32, 27339–27347 (2021). https://doi.org/10.1007/s10854-021-07104-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07104-w

Navigation