Skip to main content
Log in

The fast degradation for tetracycline over the Ag/AgBr/BiOBr photocatalyst under visible light

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of Ag/AgBr/BiOBr photocatalysts with different weight contents of Ag/AgBr were successfully constructed via a simple precipitation method in 80 °C water bath. Photocatalysts were characterized by XRD, XPS, SEM, TEM, N2 Adsorption-Desorption (BET), and UV–Vis Diffuse Reflectance Spectroscopy (DRS). Compared with BiOBr and Ag/AgBr, all the composite photocatalysts show the prominent photocatalytic activity for the degradation of tetracycline (TC). Especially, 1:5Ag/AgBr/BiOBr (20%) has the highest reaction rate constant (kapp = 0.20 min−1). Moreover, according to the results of radical scavengers runs, ·OH and h+ acted as the main reactive species in the degradation process. Based on above, a possible photocatalytic mechanism for organics degradation over Ag/AgBr/BiOBr was proposed. Interestingly, the redox cycle between O2/·O2 and Br/Br0 assisted with the surface plasmon resonance (SPR) effect of silver dramatically promotes the separation and transfer of electron–hole pairs, and improves the photocatalytic activity of the as-obtained composite samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y. Yang, Z. Zeng, C. Zhang et al., Construction of iodine vacancy-rich BiOI/Ag@AgI Z-scheme heterojunction photocatalysts for visible-light-driven tetracycline degradation: transformation pathways and mechanism insight. Chem. Eng. J. 349, 808–821 (2018)

    Article  CAS  Google Scholar 

  2. D. Nasuhoglu, A. Rodayan, D. Berk et al., Removal of the antibiotic levofloxacin (LEVO) in water by ozonation and TiO2 photocatalysis. Chem. Eng. J. 189, 41–48 (2012)

    Article  CAS  Google Scholar 

  3. W. Li, X. Chu, S. He et al., Gourd-like hollow mesoporous silica particle supported Ag/AgBr Schottky junction for high-efficient mineralization of tetracycline hydrochloride. Environ. Sci. Nano. 7, 2654 (2020)

    Article  CAS  Google Scholar 

  4. D. Curry, K. Andrea, A. Carrier et al., Surface interaction of doxorubicin with anatase determines its photodegradation mechanism: Insights into removal of waterborne pharmaceuticals by TiO2 nanoparticles. Environ. Sci. Nano. 5, 1027–1035 (2018)

    Article  CAS  Google Scholar 

  5. C. Hua, H. Luo, Y. Lan et al., Removal of tetracycline from aqueous solutions using polyvinylpyrrolidone (PVP-K30) modified nanoscale zero valent iron. J. Hazard. Mater. 192, 44–53 (2011)

    Google Scholar 

  6. X.S. Miao, F. Bisay, M. Chen et al., Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada. Environ. Sci. Technol. 38, 3533–3541 (2004)

    Article  CAS  Google Scholar 

  7. X.D. Zhu, Y.J. Wang et al., TiO2 photocatalytic degradation of tetracycline as affected by a series of environmental factors. J. Soils Sediments. 14, 1350–1358 (2014)

    Article  CAS  Google Scholar 

  8. M. Wu, D. Xu, B. Luo et al., Synthesis of BiYO3 nanorods with visible-light photocatalytic activity for the degradation of tetracycline. Mater. Lett. 161, 45–48 (2015)

    Article  CAS  Google Scholar 

  9. L. Yue, S. Wang, G. Shan et al., Novel MWNTs–Bi2WO6 composites with enhanced simulated solar photoactivity toward adsorbed and free tetracycline in water. Appl. Catal. B. Environ. 176, 11–19 (2015)

    Article  CAS  Google Scholar 

  10. P. Mahamallik, S. Saha, A. Pal, Tetracycline degradation in aquatic environment by highly porous MnO2 nanosheet assembly. Chem. Eng. J. 276, 155–165 (2015)

    Article  CAS  Google Scholar 

  11. H. Zhao, W. Yin, M. Zhao et al., Hydrothermal fabrication and enhanced photocatalytic activity of hexagram shaped InOOH nanostructures with exposed (020) facets  Appl. Catal. B. Environ. 130, 178–186 (2013)

    Article  CAS  Google Scholar 

  12. G.A. Feng, C. Xh, C. Zc et al., Investigation of visible-light-driven photocatalytic tetracycline degradation via carbon dots modified porous ZnSnO3 cubes: Mechanism and degradation pathway. Sep. Purif. Technol. 253, 117518 (2020)

    Article  CAS  Google Scholar 

  13. X. Ma, K. Chen, B. Niu et al., Preparation of BiOCl0.9I0.1/β-Bi2O3 composite for degradation of tetracycline hydrochloride under simulated sunlight. Chin. J Catal. 41, 535–1543 (2020)

    Google Scholar 

  14. Z. Qiang, S. Zhu, T. Li et al., Excellent photo- and sono- catalytic BiOF/Bi2O3 heterojunction nanoflakes synthesized via pH-dependent and ionic liquid assisted solvothermal method. Mater. Today Commun. 23, 100980 (2020)

    Article  CAS  Google Scholar 

  15. A. Ts, A. Tc, B. Kh et al., Solvothermal synthesis of BiOBr photocatalyst with an assistant of PVP for visible-light-driven photocatalytic degradation of fluoroquinolone antibiotics-Science Direct. Catal. Today (2021). https://doi.org/10.1016/j.cattod.2021.04.008

    Article  Google Scholar 

  16. S. Fu, X. Liu, Y. Yan et al., Few-layer WS2 modified BiOBr nanosheets with enhanced broad-spectrum photocatalytic activity towards various pollutants removal. Sci. Total Environ. 694, 133756 (2019)

    Article  CAS  Google Scholar 

  17. Q. Ma, H. Zhang, R. Guo et al., A novel strategy to fabricate plasmonic Ag/AgBr nano-particle and its enhanced visible photocatalytic performance and mechanism for degradation of acetaminophen. J. Taiwan Inst. Chem. Eng. 80, 176–183 (2017)

    Article  CAS  Google Scholar 

  18. J.G. McEvoy, Z.S. Zhang et al., Synthesis and characterization of Ag/AgBr-activated carbon composites for visible light induced photocatalytic detoxification and disinfection. J. Photochem. Photobiol. A. Chem. 321, 161–170 (2016)

    Article  CAS  Google Scholar 

  19. X. Yan, X.Y. Wang, W. Gu et al., Single-crystalline AgIn(MoO4)2 nanosheets grafted Ag/AgBr composites with enhanced plasmonic photocatalytic activity for degradation of tetracycline under visible light. Appl. Catal. B. Environ. 164, 297–304 (2015)

    Article  CAS  Google Scholar 

  20. W. Li, X. Chu, S. He et al., Gourd-like hollow mesoporous silica particle supported Ag/AgBr Schottky junction for high-efficient mineralization of tetracycline hydrochloride. Environ. Sci. Nano. 7, 2654–2668 (2020)

    Article  CAS  Google Scholar 

  21. M.Y. Ding, D.S. Meng, Y.H. Tang et al., One-dimensional porous Ag/AgBr/TiO2 nanofibres with enhanced visible light photocatalytic activity. Chem. Pap. 69, 1411–1420 (2015)

    Article  CAS  Google Scholar 

  22. J. He, D.W. Shao, L.C. Zheng et al., Construction of Z-scheme Cu2O/Cu/AgBr/Ag photocatalyst with enhanced photocatalytic activity and stability under visible light. Appl. Catal. B. Environ. 203, 917–926 (2017)

    Article  CAS  Google Scholar 

  23. Q. Zhou, L. Zhang, P. Zuo et al., Enhanced photocatalytic performance of spherical BiOI/MnO2 composite and mechanism investigation. RSC Adv. 8, 36161–36166 (2018)

    Article  CAS  Google Scholar 

  24. T.T. Li, S. Luo, L. Yang, Microwave-assisted solvothermal synthesis of flower-like Ag/AgBr/BiOBr microspheres and their high efficient photocatalytic degradation for p-nitrophenol. J. Solid State Chem. 206, 308–316 (2013)

    Article  CAS  Google Scholar 

  25. G. Gupta, A. Kaur, A. Sinha et al., Photocatalytic degradation of levofloxacin in aqueous phase using Ag/AgBr/BiOBr microplates under visible light. Mater. Res. Bull. 88, 148–155 (2017)

    Article  CAS  Google Scholar 

  26. Z. Wang, Z. Chu, C. Dong et al., Ultrathin BiOX (X = Cl, Br, I) nanosheets with exposed {001} facets for photocatalysis. ACS Appl. Nano Mater. 3, 1981–1991 (2020)

    Article  CAS  Google Scholar 

  27. Y. Wang, J. He, Y. Zhu et al., Hierarchical Bi-doped BiOBr microspheres assembled from nanosheets with (001) facet exposed via crystal facet engineering toward highly efficient visible light photocatalysis. Appl. Surf. Sci. 514, 145927 (2020)

    Article  CAS  Google Scholar 

  28. Y. Chen, Z. Yan, Q. Dong et al., One-step: In situ synthesis of BiOCl/(BiO)2CO3 composite photocatalysts with exposed high-energy {001} facets. CrystEngComm. 20, 7838–7850 (2018)

    Article  CAS  Google Scholar 

  29. G. Yentur, M. Dukkanci, Fabrication of magnetically separable plasmonic composite photocatalyst of Ag/AgBr/ZnFe2O4 for visible light photocatalytic oxidation of carbamazepine. Appl. Surf. Sci. 510, 145374 (2020)

    Article  CAS  Google Scholar 

  30. X. Lin, J. Hou, X. Guo et al., Heterostructured Ag3PO4/Ag/Bi3.64Mo0.36O6.55 nanospheres with enhanced photocatalytic activity under visible light irradiation. Sep. Purif. Technol. 156, 875–880 (2015)

    Article  CAS  Google Scholar 

  31. S. Li, B. Xue, J. Chen et al., Constructing a plasmonic p-n heterojunction photocatalyst of 3D Ag/Ag6Si2O7/Bi2MoO6 for efficiently removing broad-spectrum antibiotics. Sep. Purif. Technol. 254, 117579 (2021)

    Article  CAS  Google Scholar 

  32. Y. Zhu, R. Zhu, L. Yan et al., Visible-light Ag/AgBr/ferrihydrite catalyst with enhanced heterogeneous photo-Fenton reactivity via electron transfer from Ag/AgBr to ferrihydrite. Appl. Catal. B. Environ. 239, 280–289 (2018)

    Article  CAS  Google Scholar 

  33. W. Hui, D. Yong, S. Chen et al., Oxygen vacancy mediated exciton dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activation. J. Am. Chem. Soc. 140, 1760–1766 (2018)

    Article  CAS  Google Scholar 

  34. A.H. Zahid, Q. Han, X. Jia et al., Highly stable 3D multilayered nanoparticles-based β-Bi2O3 hierarchitecture with enhanced photocatalytic activity. Opt. Mater. 109, 110389 (2020)

    Article  CAS  Google Scholar 

  35. S. Fu, X. Liu, Y. Yan et al., Few-layer WS2 modified BiOBr nanosheets with enhanced broad-spectrum photocatalytic activity towards various pollutants removal. Sci. Total Environ. 694, 133756 (2019)

    Article  CAS  Google Scholar 

  36. R. Saravanan, M. Khan et al., ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents. J. Colloid Interface Sci. 452, 126–133 (2015)

    Article  CAS  Google Scholar 

  37. J. Lyu, Z. Hu, Z. Li et al., Removal of tetracycline by BiOBr microspheres with oxygen vacancies: Combination of adsorption and photocatalysis. J. Phys. Chem. Solids 129, 61–70 (2019)

    Article  CAS  Google Scholar 

  38. A. Lt, B. Lla, A. Qc et al., The construction and performance of photocatalytic-fuel-cell with Fe-MoS reduced graphene [emailprotected] fiber cloth and ZnFeO /Ag/AgVO @carbon felt as photo electrodes. Electrochimica. Acta. (2020). https://doi.org/10.1016/j.electacta.2020.137037

    Article  Google Scholar 

  39. Y. Yang, W. Guo, Y. Guo et al., Fabrication of Z-scheme plasmonic photocatalyst Ag@AgBr/g-C3N4 with enhanced visible-light photocatalytic activity. J. Hazard. Mater. 271, 150–159 (2014)

    Article  CAS  Google Scholar 

  40. P. Intaphong, A. Phuruangrat, K. Karthik et al., Effect of pH on phase, morphology and photocatalytic properties of BiOBr synthesized by hydrothermal method. J. Inorg. Organomet. Polym. Mater. 2, 714–721 (2020)

    Article  CAS  Google Scholar 

  41. X. Ren, K. Wu, Z. Qin et al., The construction of type II heterojunction of Bi2WO6/BiOBr photocatalyst with improved photocatalytic performance. J. Alloys Compd. 788, 102–109 (2019)

    Article  CAS  Google Scholar 

  42. H. Salari, H.H. Hosseini, In situ synthesis of visible-light-driven a-MnO2 nanorod/AgBr nanocomposites for increased photoinduced charge separation and enhanced photocatalytic activity. Mater. Res. Bull. 133, 111046 (2020)

    Article  CAS  Google Scholar 

  43. F. Guo, W. Shi, H.B. Wang et al., Study on highly enhanced photocatalytic tetracycline degradation of type II AgI/CuBi2O4 and Z-scheme AgBr/CuBi2O4 heterojunction photocatalysts. J. Hazard. Mater. 349, 111–118 (2018)

    Article  CAS  Google Scholar 

  44. Y. Shen, Z. Zhu, X. Wang et al., Synthesis of Z-scheme g-C3N4/Ag/Ag3PO4 composite for enhanced photocatalytic degradation of phenol and selective oxidation of gaseous isopropanol. Mater. Res. Bull. 107, 407–415 (2018)

    Article  CAS  Google Scholar 

  45. T. Chankhanittha, V. Somaudon, T. Photiwat et al., Enhanced photocatalytic performance of ZnO/Bi2WO6 heterojunctions toward photodegradation of fluoroquinolone-based antibiotics in wastewater. J. Phys. Chem. Solids 153, 109995 (2021)

    Article  CAS  Google Scholar 

  46. X.J. Zhang, Y.C. Guo, J. Tian et al., Controllable growth of MoS2 nanosheets on novel Cu2S snowflflakes with high photocata lytic activity. Appl. Catal. B. Environ 232, 355–364 (2018)

    Article  CAS  Google Scholar 

  47. W. Xu, S. Lai, S.C. Pillai et al., Visible light photocatalytic degradation of tetracycline with porous Ag/graphite carbon nitride plasmonic composite: Degradation pathways and mechanism. J. Colloid Interface Sci. 574, 110–121 (2020)

    Article  CAS  Google Scholar 

  48. Y. Sun, H. Juan et al., Hierarchically Z-scheme photocatalyst of Ag@AgCl decorated on BiVO4 (040) with enhancing photoelectrochemical and photocatalytic performance. Appl. Catal. B. Environ. 170, 714–721 (2015)

    Google Scholar 

  49. Z.Y. Zhang, J.J. Yu, L.Y. Ma, Preparation of the plasmonic Ag/AgBr/ZnO film substrate for reusable SERS detection: Implication to the Z-scheme photocatalytic mechanism. Spectrochim. Acta A Mol. Biomol. Spectrosc. 224, 117381 (2020)

    Article  CAS  Google Scholar 

  50. W. Peng, B. Huang, Z. Lou et al., Synthesis of highly efficient Ag@AgCl plasmonic photocatalysts with various structures. Chem. Eur. J. 16, 538–544 (2010)

    Article  CAS  Google Scholar 

  51. P. Wang, B.B. Huang, X.Y. Qin et al., Ag@AgCl: A highly efficient and stable photocatalyst active under visible light. Angew. Chem. Int. 47, 7931–7933 (2008)

    Article  CAS  Google Scholar 

  52. B. Nlmta, C. Jk, E. Blgd et al., Ag-doped graphitic carbon nitride photocatalyst with remarkably enhanced photocatalytic activity towards antibiotic in hospital wastewater under solar light - Science Direct. J. Ind. Eng. Chem. 80, 597–605 (2019)

    Article  CAS  Google Scholar 

  53. W. Qiang, B. Hz, L.A. Bing, Synergy of Ti-O-based heterojunction and hierarchical 1D nanobelt/3D microflower heteroarchitectures for enhanced photocatalytic tetracycline degradation and photoelectrochemical water splitting - ScienceDirect. Chem. Eng. Sci. 378, 122072 (2019)

    Article  CAS  Google Scholar 

  54. H. Yan, Z. Zhu et al., Single-source-precursor-assisted synthesis of porous WO3/g-C3N4 with enhanced photocatalytic property. Colloids Surf. A Physicochem. Eng. Asp. 582, 123857 (2019)

    Article  CAS  Google Scholar 

  55. S. Fu, X. Liu, Y. Yan et al., Few-layer WS2 modified BiOBr nanosheets with enhanced broad-spectrum photocatalytic activity towards various pollutants removal. Sci. Total Environ. 694, 133756 (2019)

    Article  CAS  Google Scholar 

  56. L.A. Ying, E. Wx, C. Jfab et al., Highly dispersed bismuth oxide quantum dots/graphite carbon nitride nanosheets heterojunctions for visible light photocatalytic redox degradation of environmental pollutants. Appl. Catal. B. Environ. 295, 120279 (2021)

    Article  CAS  Google Scholar 

  57. F.W. Jia, X.F. Xiu, T.D. Hao et al., Bimetallic silver/bismuth-MOFs derived strategy for Ag/AgCl/BiOCl composite with extraordinary visible light-driven photocatalytic activity towards tetracycline. J. Alloys Compd. 877, 160262 (2021)

    Article  CAS  Google Scholar 

  58. J. Lyu, Z. Hu, Z. Li et al., Removal of tetracycline by BiOBr microspheres with oxygen vacancies: Combination of adsorption and photocatalysis. J. Phys. Chem. Solids 129, 61–70 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding for this work from AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, the National Natural Science Foundation of China (21171002), and Anhui Provincial Natural Science Foundation (1708085MB37). And this work is completed under the assistance and help of the Song sun professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimei Song.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Song, J., Wang, X. et al. The fast degradation for tetracycline over the Ag/AgBr/BiOBr photocatalyst under visible light. J Mater Sci: Mater Electron 32, 26465–26479 (2021). https://doi.org/10.1007/s10854-021-07024-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07024-9

Navigation