Skip to main content
Log in

Physisorption mechanism in a novel ionogel membrane based CO2 gas sensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The steadily increasing concentration of carbon dioxide (CO2) gas in the atmosphere is a significant environmental problem in modern society. Henceforth, there is triggering interest in the new technological solutions for CO2 monitoring. This work reports the fabrication of a novel, low cost, chemiresistive carbon dioxide sensor based on the PVA/[EMIM][SCN] based ionogel membrane. Here, the lightweight transparent ionogel membrane with enhanced ionic conductivity is acted as the electrically conductive region of the sensor. The response rate of the CO2 sensor was monitored in terms of direct as well as alternating current resistance using a high-precision multimeter and an impedance spectroscopy, respectively. The CO2 desorption kinetics were also studied to check the reliability of the sensor using the conductometric approach. The selectivity of the sensor for CO2 gas was well evidently quantified by comparing the response rate of the sensor with both CO2 and N2 gases. The optical microscopic images were periodically taken before and after CO2 exposure in conjunction with the conductivity data revealed the physisorption mechanism of the sensor. The upshots presented herein will promote the development of an organic CO2 gas sensor, which will be worthwhile for numerous industrial and practical applications and for air quality control in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W. M. Organization, Wmo Greenhouse Gas Bulletin (2017).

  2. M. A. Raza, A. Habib, Z. Kanwal, S. S. Hussain, M. J. Iqbal, M. Saleem, S. Riaz, and S. Naseem, 2018, (2018).

  3. T. Li, Y. Wu, J. Huang, S. Zhang, Sensors Actuators B. Chem. 243, 566 (2017)

    Article  CAS  Google Scholar 

  4. X. Wang, H. Qin, L. Sun, J. Hu, Sensors Actuators B. Chem. 188, 965 (2013)

    Article  CAS  Google Scholar 

  5. (n.d.).

  6. M. Honda, Y. Takei, K. Ishizu, H. Imamoto, T. Itoh, R. Maeda, K. Matsumoto, I. Shimoyama, IEEE 98, 4 (2012)

    Google Scholar 

  7. D. Wei, A. Ivaska, Anal. Chim. Acta 607, 126 (2008)

    Article  CAS  Google Scholar 

  8. M. Watanabe, M.L. Thomas, S. Zhang, K. Ueno, T. Yasuda, K. Dokko, Chem. Rev. 117, 7190 (2017)

    Article  CAS  Google Scholar 

  9. H. Ohno, Electrochemical Aspects of Ionic Liquids (n.d.).

  10. Y. Liu, R. Zhao, M. Ghaffari, J. Lin, S. Liu, H. Cebeci, R. Guzmán, D. Villoria, R. Montazami, D. Wang, B.L. Wardle, J.R. Heflin, Q.M. Zhang, Sensors Actuators A. Phys. 181, 70 (2012)

    Article  CAS  Google Scholar 

  11. Z. Dai, R.D. Noble, D.L. Gin, X. Zhang, L. Deng, J. Memb. Sci. 497, 1 (2016)

    Article  CAS  Google Scholar 

  12. K. Behera, S. Pandey, A. Kadyan, S. Pandey, 30487 (2015).

  13. P.S.E.V.E. Visser, A. 35487 Department of chemistry and center for green manufacturing, The University of Alabama, Tuscaloosa, M. by A. E. Visser, JRDRAKLDDN James H. Davis, in Ion. Liq. (2002), pp. 69–87.

  14. O. Oter, K. Ertekin, D. Topkaya, S. Alp, Anal. Bioanal. Chem. 386, 1225 (2006)

    Article  CAS  Google Scholar 

  15. O. Oter, K. Ertekin, D. Topkaya, S. Alp, Sensors Actuators B Chem. 117, 295 (2006)

    Article  CAS  Google Scholar 

  16. O. Oter, K. Ertekin, S. Derinkuyu, Talanta 76, 557 (2008)

    Article  CAS  Google Scholar 

  17. R.N. Dansby-Sparks, J. Jin, S.J. Mechery, U. Sampathkumaran, T.W. Owen, B.D. Yu, K. Goswami, K. Hong, J. Grant, Z.L. Xue, Anal. Chem. 82, 593 (2010)

    Article  CAS  Google Scholar 

  18. S. Aydogdu, K. Ertekin, A. Suslu, M. Ozdemir, E. Celik, U. Cocen, J. Fluoresc. 21, 607 (2011)

    Article  CAS  Google Scholar 

  19. Y. Liu, Y. Tang, N.N. Barashkov, I.S. Irgibaeva, J.W.Y. Lam, R. Hu, D. Birimzhanova, Y. Yu, B.Z. Tang, J. Am. Chem. Soc. 132, 13951 (2010)

    Article  CAS  Google Scholar 

  20. S.M. Borisov, M.C. Waldhier, I. Klimant, O.S. Wolfbeis, Chem. Mater. 19, 6187 (2007)

    Article  CAS  Google Scholar 

  21. K. Ishizu, Y. Takei, M. Honda, K. Noda, A. Inaba, T. Itoh, R. Maeda, K. Matsumoto, I. Shimoyama, Transducers 978, 1633 (2013)

    Google Scholar 

  22. B.A. Rosen, J.L. Haan, P. Mukherjee, B. Braunschweig, W. Zhu, A. Salehi-Khojin, D.D. Dlott, R.I. Masel, J. Phys. Chem. C 116, 15307 (2012)

    Article  CAS  Google Scholar 

  23. C. Xiao, X. Zeng, J. Electrochem. Soc. 160, H749 (2013)

    Article  CAS  Google Scholar 

  24. S.K.P. Hussan, M.S. Thayyil, V.K. Rajan, A. Antony, J. Phys. Chem. B 123, 6618 (2019)

    Google Scholar 

  25. K.P. Safna Hussan, T. Mohamed Shahin, S.K. Deshpande, T.V. Jinitha, J. Kolte, Solid State Ion. 310, 166 (2017)

    Article  CAS  Google Scholar 

  26. K.P. Safna Hussan, T. Mohamed Shahin, T.V. Jinitha, K. Jayant, J. Mol. Liq. 274, 402 (2019)

    Article  CAS  Google Scholar 

  27. K.P. Safna Hussan, M.S. Thayyil, T.V. Jinitha, J. Kolte, J. Mol. Liq. 274, 402 (2019)

    Article  CAS  Google Scholar 

  28. S. Naduparambath, M. P. Sreejith, T. V Jinitha, V. Shaniba, K. B. Aparna, E. Purushothaman, (2017).

  29. C. Chiang, K. Tsai, Y. Lee, H. Lin, Y. Yang, C. Shih, C. Lin, H. Jeng, Y. Weng, Y. Cheng, K. Ho, C. Dai, Microelectron. Eng. 111, 409 (2013)

    Article  CAS  Google Scholar 

  30. P.M. Junais, Mater. Res. Express 6, 045914 (2019)

    Article  Google Scholar 

  31. R. Cheruku, D. S. Bhaskaram, and G. Govindaraj, J. Mater. Sci. Mater. Electron. 0, 0 (n.d.).

  32. R.R. Nigmatullin, Y.E. Ryabov, Phys. Solid State 39, 87 (1997)

    Article  Google Scholar 

  33. T.V. Jinitha, S.H.K.P.N. Subair, V. Shaniba, A.K. Balan, E. Purushothaman, RSC Adv. 8, 34388 (2018)

    Article  Google Scholar 

  34. G. Giannoukos, M. Min, Int. J. Circuits, Syst. Signal Process. 8, 600 (2014).

  35. L. Kumar, I. Rawal, A. Kaur, S. Annapoorni, Sensors Actuators B Chem. 240, 408 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Safna Hussan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussan, K.P.S., Moidu, H.H., Thayyil, M.S. et al. Physisorption mechanism in a novel ionogel membrane based CO2 gas sensor. J Mater Sci: Mater Electron 32, 25164–25174 (2021). https://doi.org/10.1007/s10854-021-06973-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06973-5

Navigation