Skip to main content
Log in

Resistance-temperature characteristics of a new high-temperature thermistor ceramics of Mn-doping Ba–Ca–Zr–Ti–O system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Mn-doped (Ba0.85Ca0.15)(Ti0.9Zr0.1)1−xMnxO3 (x = 0.000, 0.005, 0.010, 0.015, 0.100) (BCZTM) negative temperature coefficient (NTC) thermistor ceramics were prepared by solid-state method, and a research of their microstructures and electrical properties was also carried out. The excellent NTC properties of BCZTM ceramics sintered at high temperature were characterized by X-ray diffraction (XRD), scanning electron microscope, X-ray photoelectron spectroscopy, Raman spectroscopy, and infrared spectra (IR) analysis in this study. It is proved that the sintering temperature of BCZTM NTC thermistor ceramics is reduced by doping; it possesses a wide working temperature range (200–1100 °C) as well. All XRD, Raman, and IR spectra indicate the formation of perovskite phase. A trace Mn-doping can regulate the resistivity and activation energy of materials, yielding B400/900 = 9992.1−11186.8 K, ρ900 = 245.9−664.4 Ω cm, Ea600/900 = 0.9649–1.0175 eV, whereas excessive (x = 0.100) Mn-doping leads to a second phase. Besides, owing to small aging coefficient at 900 °C (less than 0.8%) and good high temperature stability, it can be used as a candidate material for high temperature and harsh environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Feteira, Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective. J. Am. Ceram. Soc. 92, 967–983 (2009)

    Article  CAS  Google Scholar 

  2. V.M. Goldschmidt, Die Gesetze der Krystallochemie. Sci. Nat. 14, 477–485 (1926)

    Article  CAS  Google Scholar 

  3. W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2009)

    Article  Google Scholar 

  4. J. Wu, D. Xiao, W. Wu, Q. Chen, J. Zhu, Z. Yang, J. Wang, Role of room-temperature phase transition in the electrical properties of (Ba, Ca)(Ti, Zr)O3 ceramics. Scr. Mater. 65, 771–774 (2011)

    Article  CAS  Google Scholar 

  5. X. Chen, X. Chao, Z. Yang, Submicron barium calcium zirconium titanate ceramic for energy storage synthesised via the co-precipitation method. Mater. Res. Bull. 111, 259–266 (2019)

    Article  CAS  Google Scholar 

  6. Z. Sun, Y. Pu, Z. Dong, Y. Hu, X. Liu, P. Wang, M. Ge, Dielectric and piezoelectric properties and PTC behavior of Ba0.9Ca0.1Ti0.9Zr0.1O3-xLa ceramics prepared by hydrothermal method. Mater. Lett. 118, 1–4 (2014)

    Article  Google Scholar 

  7. M.Z. Sun, J. Du, C. Chen, P. Fu, P. Li, J.G. Hao, Z.X. Yue, W. Li, Enhanced piezoelectric properties in M (M = Co or Zn)-doped Ba0.99Ca0.01Ti0.98Zr0.02O3 ceramics. Ceram. Int. 46, 17351–17360 (2020)

    Article  CAS  Google Scholar 

  8. S. Saparjya, T. Badapanda, S. Behera, B. Behera, P.R. Das, Effect of Gadolinium on the structural and dielectric properties of BCZT ceramics. Phase Transit. 93, 245–262 (2020)

    Article  CAS  Google Scholar 

  9. F. Guan, Z.W. Dang, X. Chen, S.F. Huang, J.R. Wang, X. Cheng, Y.Q. Wu, Novel electrical properties of Mn-doped LaCrO3 ceramics as NTC thermistors. J. Alloys Compd. 871, 159269 (2021)

    Article  CAS  Google Scholar 

  10. H. Zhou, D. Lu, S. Fang, C. Liu, Y. Chen, Y. Hu, Q. Luo, Prompting direct single electron transfer to produce non-radical 1O2/H* by electro-activating peroxydisulfate process with core-shell cathode. J. Environ. Manage. 287, 112294 (2021)

    Article  CAS  Google Scholar 

  11. M.A. Rafiq, T.U. Zaman, H.A. Ishfaq, A. Maqbool, M. Waqar, Q.K. Muhammad, A. Anjum, A. Waris, Exploring the conduction mechanism of multiferroic SrM-BCZT composite. Ceram. Int. 46, 2489–2499 (2020)

    Article  CAS  Google Scholar 

  12. W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, Piezoelectric and dielectric properties of (Ba1 – xCax)(Ti0.95Zr0.05)O3 lead-free ceramics. J. Am. Ceram. Soc. 93, 2942–2944 (2010)

    Article  CAS  Google Scholar 

  13. X.-P. Jiang, L. Li, C. Chen, X.-J. Wang, X.-H. Li, Effects of Mn-doping on the properties of (Ba0.92Ca0.08)(Ti0.95Zr0.05)O3 lead-free ceramics. J. Alloys Compd. 574, 88–91 (2013)

    Article  CAS  Google Scholar 

  14. R.D. Shannon, Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 32, 751–767 (1976)

    Article  Google Scholar 

  15. H.J. Sun, S.H. Duan, X.F. Liu, D.W. Wang, H.T. Sui, Lead-free Ba0.98Ca0.02Zr0.02Ti0.98O3 ceramics with enhanced electrical performance by modifying MnO2 doping content and sintering temperature. J. Alloys Compd. 670, 262–267 (2016)

    Article  CAS  Google Scholar 

  16. Z. Yao, Q. Luo, C. Xu, L. Zhang, H. Hao, Z. Yu, M. Cao, H. Liu, Titanium deficiency in tetragonal-structured (Ba,Ca)(Zr,Ti)O3 piezoelectric ceramics. J. Alloys Compd. 712, 406–411 (2017)

    Article  CAS  Google Scholar 

  17. V.S. Puli, A. Kumar, D.B. Chrisey, M. Tomozawa, J.F. Scott, R.S. Katiyar, Barium zirconate-titanate/barium calcium-titanate ceramics via sol-gel process: novel high-energy-density capacitors. J. Phys. D Appl. Phys. 44, 395403 (2011)

    Article  Google Scholar 

  18. S. Filipović, V.P. Pavlović, M. Mitrić, S. Lević, N. Mitrović, A. Maričić, B. Vlahović, V.B. Pavlović, Synthesis and characterization of BaTiO3/α-Fe2O3 core/shell structure. J. Adv. Ceram. 8, 133–147 (2019)

    Article  Google Scholar 

  19. P.S. Dobal, R.S. Katiyar, Studies on ferroelectric perovskites and Bi-layered compounds using micro-Raman spectroscopy. J. Raman Spectrosc. 33, 405–423 (2002)

    Article  CAS  Google Scholar 

  20. Y. Zhang, H. Deng, S. Si, T. Wang, D. Zheng, P. Yang, J. Chu, Band gap narrowing and magnetic properties of transition-metal‐doped Ba0.85Ca0.15Ti0.9Zr0.1O3 lead‐free ceramics. J. Am. Ceram. Soc. 103, 2491–2498 (2019)

    Article  Google Scholar 

  21. F. Bahri, H. Khemakhem, Raman and dielectric investigation of (Ba0.9–xSrxCa0.1)(Ti0.8Zr0.2)O3 ferroelectric ceramics. Ceram. Int. 40, 7909–7913 (2014)

    Article  CAS  Google Scholar 

  22. B.D. Begg, K.S. Finnie, E.R. Vance, Raman study of the relationship between room-temperature tetragonality and the Curie point of barium titanate. J. Am. Ceram. Soc. 79, 2666–2672 (1996)

    Article  CAS  Google Scholar 

  23. R. Hayati, M.A. Bahrevar, Y. Ganjkhanlou, V. Rojas, J. Koruza, Electromechanical properties of Ce-doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoceramics. J. Adv. Ceram. 8, 186–195 (2019)

    Article  CAS  Google Scholar 

  24. T.L. Phan, P.D. Thang, T.A. Ho, T.V. Manh, T.D. Thanh, V.D. Lam, N.T. Dang, S.C. Yu, Local geometric and electronic structures and origin of magnetism in Co-doped BaTiO3 multiferroics. J. Appl. Phys. 117, 17D904 (2015)

    Article  Google Scholar 

  25. V.R. E, A. Mahajan, M.P.F. Graça, S.K. Mendiratta, J.M. Monteiro, M.A. Valente, Structure and ferroelectric studies of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 piezoelectric ceramics. Mater. Res. Bull. 48, 4395–4401 (2013)

    Article  CAS  Google Scholar 

  26. M. Toyoda, Y. Hamaji, K. Tomono, Fabrication of PbTiO3 ceramic fibers by sol-gel processing. J. Sol-Gel. Sci. Technol. 9, 71–84 (1997)

    Article  CAS  Google Scholar 

  27. T. Hou, Z. Jia, B. Wang, H. Li, X. Liu, Q. Chi, G. Wu, Metal-organic framework-derived NiSe2-CoSe2@C/Ti3C2Tx composites as electromagnetic wave absorbers. Chem. Eng. J. 422, 130079 (2021)

    Article  CAS  Google Scholar 

  28. Q. Zhang, B. Chen, D. Wu, Z.H. Peng, X.S. Qiao, X.L. Chao, Z.P. Yang, Controllable synthesis of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 submicron sphere by hydroxide co-precipitation method. Ceram. Int. 46, 28285–28291 (2020)

    Article  CAS  Google Scholar 

  29. K. Park, Structural and electrical properties of FeMg0.7Cr0.6Co0.7–xAlxO4 (0 ≤ x ≤ 0.3) thick film NTC thermistors. J. Eur. Ceram. Soc. 26, 909–914 (2006)

    Article  CAS  Google Scholar 

  30. M. Zhu, L. Liu, Y. Hou, H. Wang, H. Yan, Microstructure and Electrical Properties of MnO-Doped (Na0.5Bi0.5)0.92Ba0.08TiO3Lead-Free Piezoceramics. J. Am. Ceram. Soc. 90, 120–124 (2007)

    Article  CAS  Google Scholar 

  31. X.L. Cui, Y.Y. Wu, X.F. Liu, Effect of Mn on growth mechanism and morphology evolution of CrB2 in Al melt. Mater. Lett. 238, 229–232 (2019)

    Article  CAS  Google Scholar 

  32. A. Bonet, M. to Baben, N. Travitzky, P. Greil, High-Temperature Electrical Conductivity of LaCr1-xCoxO3 Ceramics. J. Am. Ceram. Soc. 99, 917–921 (2016)

    Article  CAS  Google Scholar 

  33. F.C. Tompkins, Superficial chemistry and solid imperfections. Nature. 186, 3–6 (1960)

    Article  Google Scholar 

  34. S. Kumar, S. Supriya, R. Pandey, L.K. Pradhan, R.K. Singh, M. Kar, Effect of lattice strain on structural and magnetic properties of Ca substituted barium hexaferrite. J. Magn. Magn. Mater. 458, 30–38 (2018)

    Article  CAS  Google Scholar 

  35. L. Srisombat, S. Ananta, B. Singhana, T.R. Lee, R. Yimnirun, Chemical investigation of Fe3+/Nb5+-doped barium titanate ceramics. Ceram. Int. 39, S591–S594 (2013)

    Article  CAS  Google Scholar 

  36. B. Zhang, Q. Zhao, A.M. Chang, Y.Q. Wu, Defect and electrical conduction in Mn-doped CaCu3-xMnxTi4O12 negative temperature coefficient ceramics. J. Alloys Compd. 663, 474–479 (2016)

    Article  CAS  Google Scholar 

  37. C.J. Fu, N. Chen, G.P. Du, Comparative studies of nickel doping effects at A and B sites of BaTiO3 ceramics on their crystal structures and dielectric and ferroelectric properties. Ceram. Int. 43, 15927–15931 (2017)

    Article  CAS  Google Scholar 

  38. S. Kumar, V.S. Raju, T.R.N. Kutty, Investigations on the chemical states of sintered barium titanate by X-ray photoelectron spectroscopy. Appl. Surf. Sci. 206, 250–261 (2003)

    Article  CAS  Google Scholar 

  39. H.H. Fan, C.C. Jin, Y. Wang, H.L. Hwang, Y.F. Zhang, Structural of BCTZ nanowires and high performance BCTZ-based nanogenerator for biomechanical energy harvesting. Ceram. Int. 43, 5875–5880 (2017)

    Article  CAS  Google Scholar 

  40. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257, 2717–2730 (2011)

    Article  CAS  Google Scholar 

  41. B. Wang, J.H. Wang, D.S. Shang, A.M. Chang, J.C. Yao, Sintering temperature and XPS analysis of Co2.77Mn1.71Fe1.10Zn0.42O8 NTC ceramics. Mater. Chem. Phys. 239, 122098 (2020)

    Article  CAS  Google Scholar 

  42. X. Zhou, Z. Jia, X. Zhang, B. Wang, W. Wu, X. Liu, B. Xu, G. Wu, Controllable synthesis of Ni/NiO@porous carbon hybrid composites towards remarkable electromagnetic wave absorption and wide absorption bandwidth. J. Mater. Sci. Technol. 87, 120–132 (2021)

    Article  Google Scholar 

  43. W. Wei, X. Cui, W. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40, 1697–1721 (2011)

    Article  CAS  Google Scholar 

  44. Z. Tianshu, P. Hing, H. Huang, J. Kilner, Sintering and densification behavior of Mn-doped CeO2. Mater. Sci. Eng. B 83, 235–241 (2001)

    Article  Google Scholar 

  45. J.J. Du, Y.H. Liu, G.C. Yao, X.L. Long, G.Y. Zu, J. Ma, Influence of MnO2 on the sintering behavior and magnetic properties of NiFe2O4 ferrite ceramics. J. Alloys Compd. 510, 87–91 (2012)

    Article  CAS  Google Scholar 

  46. H.W. Nesbitt, D. Banerjee, Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. Am. Mineral. 83, 305–315 (1998)

    Article  CAS  Google Scholar 

  47. A.N. Chaika, A.M. Ionov, N.A. Tulina, D.A. Shulyatev, Y.M. Mukovskii, Degradation of La0.8Ca0.2MnO3 single crystal surface: Electron spectroscopy studies. J. Electron Spectrosc. Relat. Phenom. 148, 101–106 (2005)

    Article  CAS  Google Scholar 

  48. H. Li, I.P.L. Thayil, X. Ma, X. Sang, H. Zhang, A. Chang, Electrical properties and aging behavior of Na-doped Mn1.95Co0.21Ni0.84O4 NTC ceramics. Ceram. Int. 46, 24365–24370 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of the Tasks of CAS/strategic pilot science and technology project (Class A) (Grant No. Y821D313).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongxin Xie or Aimin Chang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Xie, Y., Zhang, H. et al. Resistance-temperature characteristics of a new high-temperature thermistor ceramics of Mn-doping Ba–Ca–Zr–Ti–O system. J Mater Sci: Mater Electron 32, 25094–25107 (2021). https://doi.org/10.1007/s10854-021-06965-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06965-5

Navigation