Skip to main content
Log in

Creating terahertz pulses from titanium-doped lithium niobate-based strip waveguides with 1.55 μm light

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We demonstrate that terahertz radiation can be generated from titanium-diffused magnesium oxide-doped lithium niobate optical strip waveguides when pumped by a single laser source with a wavelength of 1.55 μm. Titanium-in-diffusion was performed on a magnesium oxide-doped lithium niobate substrate by the deposition of titanium in a 40-µm wide strip pattern and then annealing in a vacuum furnace. Prism-coupled Cherenkov-phase matching was utilized to extract the terahertz emission from the waveguide. The contrast between the emission from the waveguide against the bulk crystal when the sample was moved along its crystal facet was also recorded, where an improvement of ~ 18.0% in the time-domain peak signal of the waveguide was observed. The waveguide’s performance was also measured against that of a commercial terahertz emitter, a photoconductive antenna, where it was found that the time-domain signals of the two were comparable. The terahertz power spectra also revealed that the lithium niobate-based waveguides have a broader bandwidth by more than 1 THz, with a similar signal-to-noise ratio. As an effect, the waveguides gave a better signal at higher frequencies and, at times, reaching as high a difference of 20 dB. These results indicate the possibility of using titanium-in-diffusion to generate intense terahertz emission from titanium-doped lithium niobate waveguides and that these strip waveguides are viable alternatives to commercial terahertz emitters, especially at high frequencies. It is expected that much better output can be obtained from an optimized waveguide design and with more appropriate optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data presented in this work comply with field standards.

References

  1. M. Tonouchi, Cutting-edge terahertz technology. Nat. Photon. 1(2), 97–105 (2007). https://doi.org/10.1038/nphoton.2007.3

    Article  CAS  Google Scholar 

  2. B. Ferguson, X.-C. Zhang, Materials for terahertz science and technology. Nat. Mater. 1(1), 26–33 (2002). https://doi.org/10.1038/nmat708

    Article  CAS  Google Scholar 

  3. K. Takeya, T. Minami, H. Okano, S.R. Tripathi, K. Kawase, Enhanced Cherenkov phase matching terahertz wave generation via a magnesium oxide doped lithium niobate ridged waveguide crystal. APL Photon. 2(1), 016102 (2016). https://doi.org/10.1063/1.4968043

    Article  CAS  Google Scholar 

  4. S. Fan, H. Takeuchi, T. Ouchi, K. Takeya, K. Kawase, Broadband terahertz wave generation from a MgO:LiNbO3 ridge waveguide pumped by a 1.5 μm femtosecond fiber laser. Opt. Lett. 38(10), 1654–1656 (2013). https://doi.org/10.1364/OL.38.001654

    Article  CAS  Google Scholar 

  5. M. van Exter, Ch. Fattinger, D. Grischkowsky, High-brightness terahertz beams characterized with an ultrafast detector. Appl. Phys. Lett. 55(4), 337–339 (1989). https://doi.org/10.1063/1.101901

    Article  Google Scholar 

  6. M. van Exter, Ch. Fattinger, D. Grischkowsky, Terahertz time-domain spectroscopy of water vapor. Opt. Lett. 14(20), 1128–1130 (1989). https://doi.org/10.1364/OL.14.001128

    Article  CAS  Google Scholar 

  7. T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P.M. Oppeneer, M. Münzenberg, Terahertz spin current pulses controlled by magnetic heterostructures. Nature Nanotech. 8(4), 256–260 (2013). https://doi.org/10.1038/nnano.2013.43

    Article  CAS  Google Scholar 

  8. T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P.M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L.M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, T. Kampfrath, Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nature Photon 10(7), 483–488 (2016). https://doi.org/10.1038/nphoton.2016.91

    Article  CAS  Google Scholar 

  9. C. Zhou, Y.P. Liu, Z. Wang, S.J. Ma, M.W. Jia, R.Q. Wu, L. Zhou, W. Zhang, M.K. Liu, Y.Z. Wu, J. Qi, Broadband terahertz generation via the interface inverse Rashba-Edelstein effect. Phys. Rev. Lett. 121(8), 086801 (2018). https://doi.org/10.1103/PhysRevLett.121.086801

    Article  CAS  Google Scholar 

  10. G. Torosyan, S. Keller, L. Scheuer, R. Beigang, E. Th, Papaioannou (2018) Optimized spintronic terahertz emitters based on epitaxial grown Fe/Pt layer structures. Sci Rep. 8(1), 1311 (2018). https://doi.org/10.1038/s41598-018-19432-9

    Article  CAS  Google Scholar 

  11. D.H. Auston, Subpicosecond electro-optic shock waves. Appl. Phys. Lett. 43(8), 713–715 (1983). https://doi.org/10.1063/1.94486

    Article  CAS  Google Scholar 

  12. G.A. Askaryan, Cerenkov radiation and transition radiation from electromagnetic waves. Sov. Phys. JETP 15(5), 943–946 (1962)

    Google Scholar 

  13. D.H. Auston, K.P. Cheung, J.A. Valdmanis, D.A. Kleinman, Cherenkov radiation from femtosecond optical pulses in electro-optic media. Phys. Rev. Lett. 53(16), 1555–1558 (1984). https://doi.org/10.1103/PhysRevLett.53.1555

    Article  CAS  Google Scholar 

  14. M. Theuer, G. Torosyan, C. Rau, R. Beigang, K. Maki, C. Otani, K. Kawase, Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler. Appl. Phys. Lett. 88(7), 071122 (2006). https://doi.org/10.1063/1.2177540

    Article  CAS  Google Scholar 

  15. K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, H. Ito, Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition. Appl. Phys. Lett. 71(6), 753–755 (1997). https://doi.org/10.1063/1.119635

    Article  CAS  Google Scholar 

  16. J. Hebling, K.-L. Yeh, M.C. Hoffmann, B. Bartal, K.A. Nelson, Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities. J. Opt. Soc. Am. B 25(7), B6–B19 (2008). https://doi.org/10.1364/JOSAB.25.0000B6

    Article  CAS  Google Scholar 

  17. L. Xu, X.-C. Zhang, D.H. Auston, Terahertz beam generation by femtosecond optical pulses in electro-optic materials. Appl. Phys. Lett. 61(15), 1784–1786 (1992). https://doi.org/10.1063/1.108426

    Article  CAS  Google Scholar 

  18. J. Hebling, G. Almási, I.Z. Kozma, J. Kuhl, Velocity matching by pulse front tilting for large-area THz-pulse generation. Opt. Express 10(21), 1161–1166 (2002). https://doi.org/10.1364/OE.10.001161

    Article  CAS  Google Scholar 

  19. S.B. Bodrov, M.I. Bakunov, M. Hangyo, Efficient Cherenkov emission of broadband terahertz radiation from an ultrashort laser pulse in a sandwich structure with nonlinear core. J. Appl. Phys. 104(9), 093105 (2008). https://doi.org/10.1063/1.3005987

    Article  CAS  Google Scholar 

  20. K. Suizu, K. Koketsu, T. Shibuya, T. Tsutsui, T. Akiba, K. Kawase, Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation. Opt. Express 17(8), 6676–6681 (2009). https://doi.org/10.1364/OE.17.006676

    Article  CAS  Google Scholar 

  21. M. Tani, K. Horita, T. Kinoshita, C.T. Que, E. Estacio, K. Yamamoto, M.I. Bakunov, Efficient electro-optic sampling detection of terahertz radiation via Cherenkov phase matching. Opt. Express 19(21), 19901–19906 (2011). https://doi.org/10.1364/OE.19.019901

    Article  CAS  Google Scholar 

  22. M. Tani, T. Kinoshita, T. Nagase, K. Horita, C.T. Que, E. Estacio, K. Yamamoto, M.I. Bakunov, Non-ellipsometric detection of terahertz radiation using heterodyne EO sampling in the Cherenkov velocity matching scheme. Opt. Express 21(8), 9277–9288 (2013). https://doi.org/10.1364/OE.21.009277

    Article  Google Scholar 

  23. B.N. Carnio, A.Y. Elezzabi, Investigation of ultra-broadband terahertz generation from sub-wavelength lithium niobate waveguides excited by few-cycle femtosecond laser pulses. Opt. Express 25(17), 20573–20583 (2017). https://doi.org/10.1364/OE.25.020573

    Article  CAS  Google Scholar 

  24. M.I. Bakunov, S.B. Bodrov, A.V. Maslov, M. Hangyo, Theory of terahertz generation in a slab of electro-optic material using an ultrashort laser pulse focused to a line. Phys. Rev. B 76(8), 085346 (2007). https://doi.org/10.1103/PhysRevB.76.085346

    Article  CAS  Google Scholar 

  25. M.V. Tsarev, D. Ehberger, P. Baum, High-average-power, intense THz pulses from a LiNbO3 slab with silicon output coupler. Appl. Phys. B 122(30), 6315 (2016). https://doi.org/10.1007/s00340-015-6315-6

    Article  CAS  Google Scholar 

  26. R.V. Schmidt, I.P. Kaminow, Metal-diffused optical waveguides in LiNbO3. Appl. Phys. Lett. 25(8), 458–460 (1974). https://doi.org/10.1063/1.1655547

    Article  CAS  Google Scholar 

  27. W.K. Burns, P.H. Klein, E.J. West, L.E. Plew, Ti diffusion in Ti:LiNbO3 planar and channel optical waveguides. J. Appl. Phys. 50(10), 6175–6182 (1979). https://doi.org/10.1063/1.325801

    Article  CAS  Google Scholar 

  28. J. Veselka, S. Korotky, Optimization of Ti:LiNbO3 optical waveguides and directional coupler switches for 1.56 µm wavelength. IEEE J. Quantum Electron. 22(6), 933–938 (1986). https://doi.org/10.1109/JQE.1986.1073056

    Article  Google Scholar 

  29. M. Bazzan, C. Sada, Optical waveguides in lithium niobate: recent developments and applications. Appl. Phys. Rev. 2(4), 040603 (2015). https://doi.org/10.1063/1.4931601

    Article  CAS  Google Scholar 

  30. Y. Qi, Y. Li, Integrated lithium niobate photonics. Nanophothonics 9(6), 1287–1320 (2020). https://doi.org/10.11515/nanoph-2020-0013

    Article  CAS  Google Scholar 

  31. C. Staus, T. Kuech, L. McCaughan, Continuously phase-matched terahertz difference frequency generation in an embedded-waveguide structure supporting only fundamental modes. Opt. Express 16(17), 13296–13303 (2008). https://doi.org/10.1364/OE.16.013296

    Article  CAS  Google Scholar 

  32. S.K. Korotky, W.J. Minford, L.L. Buhl, M.D. Divino, R.C. Alferness, Mode size and method for estimating the propagation constant of single-mode Ti:LiNbO3 strip waveguides. IEEE J. Quantum Electron. 18(10), 1796–1801 (1982). https://doi.org/10.1109/JQE.1982.1071422

    Article  Google Scholar 

  33. H. Naitoh, M. Nunoshita, J. Nakayama, Mode control of Ti-diffused LiNbO3 slab optical waveguide. Appl. Opt. 16(9), 2546–2549 (1977). https://doi.org/10.1364/AO.16.002546

    Article  CAS  Google Scholar 

  34. I. Mansour, F. Caccavale, An improved procedure to calculate the refractive index profile from the measured near-field intensity. J. Lightwave Technol. 14(3), 423–428 (1996). https://doi.org/10.1109/50.485603

    Article  CAS  Google Scholar 

  35. S. Fouchet, A. Careno, C. Daguet, R. Guglielme, L. Riviere, Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters. J. Lightwave Technol. 5(5), 700–708 (1987). https://doi.org/10.1109/JLT.1987.1075563

    Article  Google Scholar 

  36. R.R.A. Syms, Advances in channel waveguide lithium niobate integrated optics. Opt. Quant. Electron. 20(3), 189–213 (1988). https://doi.org/10.1007/BF02029894

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joselito E. Muldera.

Ethics declarations

Conflict of interest

The authors have no relevant financial or nonfinancial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muldera, J.E., Afalla, J.P.C., Furuya, T. et al. Creating terahertz pulses from titanium-doped lithium niobate-based strip waveguides with 1.55 μm light. J Mater Sci: Mater Electron 32, 23164–23173 (2021). https://doi.org/10.1007/s10854-021-06802-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06802-9

Navigation