Skip to main content
Log in

Study of structural features and phase transformations in nanocomposites of Fe2O3@NdFeO3 type

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The aim of this work is to study the effect of the Nd2O3 dopant concentration on the phase composition, structural, and magnetic parameters of Fe2O3@NdFeO3-type nanocomposites, which have great prospects for use as a catalyst base for the purification of aqueous media from heavy metals. Using X-ray phase analysis, it was found that an increase in dopant concentration leads to the formation of a stable NdFeO3 phase, which dominates in the structure at concentrations of 0.4–0.5 mol. Changes in the structural parameters, as well as the density of nanocomposites, are associated with structural orderings arising as a result of phase transformations and NdFeO3 phase dominance in the structure. Using Mössbauer spectroscopy, it was found that values of the hyperfine magnetic parameters are characteristic of the hematite structure, while, according to the data obtained, the presence of paramagnetic inclusions was not observed. Evaluation results of the manganese purification efficiency of aqueous media showed that an increase in particle concentration from 0.001 to 0.005 g leads to an increase in absorption efficiency to 45–75%, which indicates a positive effect of absorption and degree of purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.K. Bamzai, M. Bhat, Electrical and magnetic properties of some rare earth orthoferrites (RFeO3 where R= Y, Ho, Er) systems. Integr. Ferroelectr. 158(1), 108–122 (2014)

    Article  CAS  Google Scholar 

  2. X. Zhang et al., Effect of interface on epitaxy and magnetism in h-RFeO3/Fe3O4/Al2O3 films (R= Lu, Yb). J. Phys. 29(16), 164001 (2017)

    Google Scholar 

  3. J. Tang et al., Ultrafast photoinduced multimode antiferromagnetic spin dynamics in exchange-coupled Fe/RFeO3 (R= Er or Dy) heterostructures. Adv. Mater. 30(27), 1706439 (2018)

    Article  CAS  Google Scholar 

  4. Z.Q. Wang et al., Magnetic structures and optical properties of rare-earth orthoferrites RFeO3 (R= Ho, Er, Tm and Lu). Solid State Commun. 288, 10–17 (2019)

    Article  CAS  Google Scholar 

  5. A.R. Akbashev et al., Weak ferromagnetism in hexagonal orthoferrites RFeO3 (R= Lu, Er-Tb). Appl. Phys. Lett. 99(12), 122502 (2011)

    Article  CAS  Google Scholar 

  6. P.J. Wang et al., Significantly enhanced electrostatic energy storage performance of P (VDF-HFP)/BaTiO3-Bi (Li0. 5Nb0. 5) O3 nanocomposites. Nano Energy 78, 105247 (2020)

    Article  CAS  Google Scholar 

  7. P.J. Wang et al., Ultrahigh enhancement rate of the energy density of flexible polymer nanocomposites using core–shell BaTiO 3@ MgO structures as the filler. J. Mater. Chem. A 8(22), 11124–11132 (2020)

    Article  CAS  Google Scholar 

  8. A. Salehabadi, M. Salavati-Niasari, M. Ghiyasiyan-Arani, Self-assembly of hydrogen storage materials based multi-walled carbon nanotubes (MWCNTs) and Dy3Fe5O12 (DFO) nanoparticles. J. Alloy. Compd. 745, 789–797 (2018)

    Article  CAS  Google Scholar 

  9. S. Ahmadian-Fard-Fini, M. Salavati-Niasari, D. Ghanbari, Hydrothermal green synthesis of magnetic Fe3O4-carbon dots by lemon and grape fruit extracts and as a photoluminescence sensor for detecting of E. coli bacteria. Spectrochim. Acta Part A 203, 481–493 (2018)

    Article  CAS  Google Scholar 

  10. M. Salavati-Niasari, Nanodimensional microreactor-encapsulation of 18-membered decaaza macrocycle copper (II) complexes. Chem. Lett. 34(2), 244–245 (2005)

    Article  CAS  Google Scholar 

  11. F. Beshkar, H. Khojasteh, M. Salavati-Niasari, Recyclable magnetic superhydrophobic straw soot sponge for highly efficient oil/water separation. J. Colloid Interface Sci. 497, 57–65 (2017)

    Article  CAS  Google Scholar 

  12. A.V. Trukhanov et al., Influence of the dysprosium ions on structure, magnetic characteristics and origin of the reflection losses in the Ni–Co spinels. J. Alloys Compd. 841, 155667 (2020)

    Article  CAS  Google Scholar 

  13. M.A. Darwish et al., Investigation of AC-measurements of epoxy/ferrite composites. Nanomater. 10(3), 492 (2020)

    Article  CAS  Google Scholar 

  14. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Z. Zinatloo-Ajabshir, Nd2Zr2O7-Nd2O3 nanocomposites: new facile synthesis, characterization and investigation of photocatalytic behaviour. Mater. Lett. 180, 27–30 (2016)

    Article  CAS  Google Scholar 

  15. M. Masjedi-Arani, M. Salavati-Niasari, Novel synthesis of Zn2GeO4/graphene nanocomposite for enhanced electrochemical hydrogen storage performance. Int. J. Hydrog. Energy 42(27), 17184–17191 (2017)

    Article  CAS  Google Scholar 

  16. M.K. Warshi et al., Structural, optical and electronic properties of RFeO3. Ceram. Int. 44(7), 8344–8349 (2018)

    Article  CAS  Google Scholar 

  17. M. Salavati-Niasari, F. Davar, Z. Fereshteh, Synthesis of nickel and nickel oxide nanoparticles via heat-treatment of simple octanoate precursor. J. Alloy. Compd. 494(1–2), 410–414 (2010)

    Article  CAS  Google Scholar 

  18. H. Han et al., Switchable ferroelectric photovoltaic effects in epitaxial h-RFeO 3 thin films. Nanoscale 10(27), 13261–13269 (2018)

    Article  CAS  Google Scholar 

  19. V.A. Ketsko et al., Specifics of pyrohydrolytic and solid-phase syntheses of solid solutions in the (MgGa 2 O 4) x (MgFe 2 O 4) 1–x system. Russ. J. Inorg. Chem. 55(3), 427–429 (2010)

    Article  CAS  Google Scholar 

  20. F. Zhang et al., Magnetic characterization and low-temperature heat transport properties of the orthoferrites RFeO 3 ($ R= $ Rare Earth) single crystals. IEEE Trans. Magn. 51(11), 1–4 (2015)

    Google Scholar 

  21. R.L. Zhang et al., Dielectric behavior of hexagonal and orthorhombic YFeO 3 prepared by modified sol-gel method. J. Electroceram. 32(2–3), 187–191 (2014)

    Article  CAS  Google Scholar 

  22. Z. Zhou et al., Hydrothermal synthesis and magnetic properties of multiferroic rare-earth orthoferrites. J. Alloys Compd. 583, 21–31 (2014)

    Article  CAS  Google Scholar 

  23. P. Sharma et al., Structural and magnetocaloric properties of rare-earth orthoferrite perovskite: TmFeO3. Chem. Phys. Lett. 740, 137057 (2020)

    Article  CAS  Google Scholar 

  24. E.E. Zubov et al., Magnetic order in ErFe O 3 single crystals studied by mean-field theory. Phys. Rev. B 99(18), 184419 (2019)

    Article  CAS  Google Scholar 

  25. Z.Q. Wang et al., First-principles study of elastic, dielectric, and vibrational properties of orthoferrites RFeO3 (R= Ho, Er, Tm and Lu). Mater. Res. Express 6(5), 055605 (2019)

    Article  CAS  Google Scholar 

  26. S. Chanda et al., Raman spectroscopy and dielectric properties of nanoceramic NdFeO3. Mater. Res. Bull. 48(4), 1688–1693 (2013)

    Article  CAS  Google Scholar 

  27. J. Shanker et al., Investigation of structural and electrical properties of NdFeO3 perovskite nanocrystalline. Phys. Lett. A 382(40), 2974–2977 (2018)

    Article  CAS  Google Scholar 

  28. E. Tugova et al., NdFeO3 nanocrystals under glycine nitrate combustion formation. J. Cryst. Growth 467, 88–92 (2017)

    Article  CAS  Google Scholar 

  29. S.A. Mir, M. Ikram, K. Asokan, Structural, optical and dielectric properties of Ni substituted NdFeO3. Optik 125(23), 6903–6908 (2014)

    Article  CAS  Google Scholar 

  30. T.A. Nguyen et al., Simple synthesis of NdFeO3 nanoparticles by the co-precipitation method based on a study of thermal behaviors of Fe (III) and Nd (III) hydroxides. Curr. Comput.-Aided Drug Des. 10(3), 219 (2020)

    CAS  Google Scholar 

  31. M.D. Luu et al., A new perovskite-type NdFeO3 adsorbent: synthesis, characterization, and As (V) adsorption. Adv. Nat. Sci. 7(2), 025015 (2016)

    Google Scholar 

  32. Y. Chen et al., CO2 sensing properties and mechanism of PrFeO3 and NdFeO3 thick film sensor. J. Rare Earths 37(1), 80–87 (2019)

    Article  CAS  Google Scholar 

  33. N. Aparnadevi et al., Room temperature dual ferroic behaviour of ball mill synthesized NdFeO3 orthoferrite. J. Appl. Phys. 120(3), 034101 (2016)

    Article  CAS  Google Scholar 

  34. L. Fenfen et al., Core/shell Fe3O4/Gd2O3 nanocubes as T1–T2 dual modal MRI contrast agents. Nanoscale 8(25), 12826–12833 (2016)

    Article  CAS  Google Scholar 

  35. L. Mohammed et al., Magnetic nanoparticles for environmental and biomedical applications: a review. Particuology 30, 1–14 (2017)

    Article  CAS  Google Scholar 

  36. Z. Hedayatnasab, F. Abnisa, W.M.A.W. Daud, Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater. Design 123, 174–196 (2017)

    Article  CAS  Google Scholar 

  37. S.R. Dafeh, P. Iranmanesh, P. Salarizadeh, Fabrication, optimization, and characterization of ultra-small superparamagnetic Fe3O4 and biocompatible Fe3O4@ ZnS core/shell magnetic nanoparticles: ready for biomedicine applications. Mater. Sci. Eng. 98, 205–212 (2019)

    Article  CAS  Google Scholar 

  38. L. Gloag et al., Advances in the application of magnetic nanoparticles for sensing. Adv. Mater. 31(48), 1904385 (2019)

    Article  CAS  Google Scholar 

  39. K. Egizbek et al., Stability and cytotoxicity study of NiFe2O4 nanocomposites synthesized by co-precipitation and subsequent thermal annealing. Ceram. Int. 46(10), 16548–16555 (2020)

    Article  CAS  Google Scholar 

  40. M.S. Angotzi et al., Coupled hard–soft spinel ferrite-based core–shell nanoarchitectures: magnetic properties and heating abilities. Nanoscale Adv. 2, 3191–3201 (2020)

    Article  Google Scholar 

  41. A.L. Kozlovskiy et al., Study of phase transformations, structural, corrosion properties and cytotoxicity of magnetite-based nanoparticles. Vacuum 163, 236–247 (2019)

    Article  CAS  Google Scholar 

  42. D.I. Tishkevich et al., Immobilization of boron-rich compound on Fe3O4 nanoparticles: stability and cytotoxicity. J. Alloy. Compd. 797, 573–581 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Ministry of Education and Science of the Republic of Kazakhstan (grant AP09259184).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Kozlovskiy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlovskiy, A.L., Egizbek, K., Zdorovets, M.V. et al. Study of structural features and phase transformations in nanocomposites of Fe2O3@NdFeO3 type. J Mater Sci: Mater Electron 32, 21237–21247 (2021). https://doi.org/10.1007/s10854-021-06626-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06626-7

Navigation