Skip to main content
Log in

Effect of amorphous SiC layer on electrical and optical properties of Al/a-SiC/c-Si Schottky diode for optoelectronic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we report on the study of the electrical and optical properties of amorphous silicon carbide (a-SiC)-based Schottky diodes for optoelectronic applications. A significant decrease of reflectivity and an enhancement of the passivating properties of more than 97% were reached after a-SiC layer deposition on silicon substrate. The deposited a-SiC film exhibits a dielectric constant of 2.143. Temperature effect on Schottky diode performances was carried out through the analysis of the current–voltage (I–V) characteristics at temperature range of 298–573 K. The ideality factor at room temperature was found to be 1.651, and it was improved to 1.132 when temperature was increased to 573 K. The calculated barrier height of the diode at room temperature was c 0.812 eV and it increased with temperature to reach 1.640 at 573 K. The change in the barrier height was attributed to the effective leakage current at high temperature. Shunt resistance Rsh remained at around 85 KΩ along this range with a slight decrease at high temperature. Series resistance Rs was sharply decreased from 520 Ω at room temperature to 45 Ω at 573 K. Thanks to the optical and electrical characterization performed, we have demonstrated the possibility of using such non hydrogenated amorphous SiC layers to improve the properties of based silicon Schottky diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Barbouche, R. Benabderrahmane Zaghouani, N.E. Benammar, K. Khirouni, H. Ezzaouia, Synthesis and characterization of 3C-SiC by rapid silica carbothermal reduction. Int J Adv Manufact Technol 91, 1339 (2016)

    Article  Google Scholar 

  2. D.K. Shi, Y. Wang, X. Wu, Z.Y. Yang, X.J. Li, J.Q. Yang, F. Cao, Improving the Barrier inhomogeneity of 4H-SiC Schottky Diodes by inserting Al2O3 interface layer. Solid-State Electronics 180, 107992 (2021)

    Article  CAS  Google Scholar 

  3. G. Bellocchi, M. Vivona, C. Bongiorno, P. Badalà, A. Bassi, S. Rascuna, F. Roccaforte, Barrier Height Tuning in Ti/4H-SiC Schottky diodes. Solid-State Electron 186, 108042 (2021)

    Article  CAS  Google Scholar 

  4. A. Latreche, Z. Ouennoughi, R. Weiss, Temperature dependence of the inhomogeneous parameters of the Mo/4H–SiC Schottky barrier diodes. Semicond Sci Technol 31, 085008 (2016)

    Article  Google Scholar 

  5. R. Radhakrishnan, T. Witt, R. Woodin, Temperature dependent design of Silicon Carbide Schottky diodes, In: 2014 IEEE Workshop on Wide Bandgap Power Devices and Applications. IEEE, 151(2014).

  6. I. Hussain, M.Y. Soomro, N. Bano, O. Nur, M. Willander, Systematic study of interface trap and barrier inhomogeneities using I-V-T characteristics of Au/ZnO nanorods Schottky diode. J Appl Phy 113, 234509 (2013)

    Article  CAS  Google Scholar 

  7. J.C. Cheng, J.E. Lee, B.Y. Tsui, Schottky barrier diodes isolated by local oxidation of SiC (LOCOSiC) using pre-amorphization implantation technology. Solid-State Electron 171, 107834 (2020)

    Article  CAS  Google Scholar 

  8. S. Wang, R. Hu, G. Chen, C. Luo, M. Gong, Y. Li, Z. Yang, Investigation of 4H-SiC Schottky barrier diodes irradiated with 6 MeV Au ions at low temperature. Nuclear Instr Method Phy Res Sect B Beam Interact Mater Atoms 494, 53–58 (2021)

    Article  CAS  Google Scholar 

  9. R. Choudhary, M. Mehta, R.S. Shekhawat, S. Singh, D. Singh, Optimization of a 4H-SiC Schottky diode using TCAD software. Mater Today Proceed (2021). https://doi.org/10.1016/j.matpr.2021.02.746

    Article  Google Scholar 

  10. M.M. Gao, L.Y. Fan, Z.Z. Chen, Ideal Ni-Based 4H–SiC Schottky barrier diodes with Si intercalation. Mater Sci Semicond Process 107, 104866 (2020)

    Article  CAS  Google Scholar 

  11. V. Kumar, J. Verma, A.S. Maan, J. Akhtar, Epitaxial 4H–SiC based Schottky diode temperature sensors in ultra-low current range. Vacuum 182, 109590 (2020)

    Article  CAS  Google Scholar 

  12. P.A. Ivanov, M.E. Levinshtein, The impact of parasitic inductance on the dV/dt ruggedness of 4H-SiC Schottky diodes. Microelectron Reliability 122, 114159 (2021)

    Article  CAS  Google Scholar 

  13. V. Kumar, S. Pawar, A.S. Maan, J. Akhtar, Diameter dependent thermal sensitivity variation trend in Ni/4H-SiC Schottky diode temperature sensors. J Vacuum Sci Technol B 33, 052207 (2015)

    Article  CAS  Google Scholar 

  14. M. Yamanaka, H. Daimon, E. Sakuma, S. Misawa, S. Yoshida, Temperature dependence of electrical properties of n-and p-type 3C-SiC. J Appl Phys 61, 599–603 (1987)

    Article  CAS  Google Scholar 

  15. M. Barbouche, R. Zaghouani Benabderrahmen, N.E. Benammar, H. Ezzaouia, Impact of rapid thermal annealing on impurities removal efficiency from silicon carbide for optoelectronic applications. Int J Adv Manufact Technol 106(1–4), 731–739 (2020)

    Article  Google Scholar 

  16. M. Barbouche, R. Benabderrahmane Zaghouani, N.E. Benammar, V. Aglieri, M. Mosca, R. Macaluso, K. Khirouni, H. Ezzaouia, New process of silicon carbide purification intended for silicon passivation. Superlatt Microstruct 101, 512 (2017)

    Article  CAS  Google Scholar 

  17. N. Elghoul, S. Kraiem, R. Jemai, B. Zebentout, K. Khirouni, Annealing effects on electrical and optical properties of a-Si: H layer deposited by PECVD. Mater. Sci. Semicond. Process. 40, 302 (2015)

    Article  CAS  Google Scholar 

  18. L. Magafas, J. Kalomiros, D. Bandekas, G. Tsirigotis, Optimization of the electrical properties of Al/a-SiC: H Schottky diodes by means of thermal annealing of a-SiC: H thin films. Microelectron J 37, 1352 (2006)

    Article  CAS  Google Scholar 

  19. D. Korucu, Temperature and series resistance effect on the forward bias current-voltage (I-V) characteristics of In/p-InP Schottky barrier diode (SBD). J. Optoelectron. Adv. Mater. 12, 2194 (2010)

    CAS  Google Scholar 

  20. J.H Werner et H.H Güttler, Temperature dependence of Schottky barrier heights on silicon, Journal of Applied Physics 73, 1315 (1993).

  21. S. Zhu, R.L. Van Meirhaeghe, C. Detavernier, G.P. Ru, B.Z. Li, F. Cardon, A BEEM study of the temperature dependence of the barrier height distribution in PtSi/n-Si Schottky diodes. Solid State Commun. 112, 611 (1999)

    Article  CAS  Google Scholar 

  22. L. Sun, Z. Shi, L. Liang, S. Wei, H. Wang, D. Dastan, K. Sun, R. Fan, Layer-structured BaTiO 3/P (VDF–HFP) composites with concurrently improved dielectric permittivity and breakdown strength toward capacitive energy-storage applications. J Mater Chem C 8, 10257 (2020)

    Article  CAS  Google Scholar 

  23. L. Sun, L. Liang, Z. Shi, H. Wang, P. Xie, D. Dastan, K. Sun, R. Fan, Optimizing strategy for the dielectric performance of topological-structured polymer nanocomposites by rationally tailoring the spatial distribution of nanofillers. Engineered Science 12, 95 (2020)

    CAS  Google Scholar 

  24. Ş Karataş, Ş Altındal, M. Çakar, Current transport in Zn/p-Si(1 0 0) Schottky barrier diodes at high temperatures. Physica B 357, 386 (2005)

    Article  CAS  Google Scholar 

  25. Ş Karataş, Ş Altındal, Analysis of I-V characteristics on Au/n-type GaAs Schottky structures in wide temperature range. Mater. Sci. Eng., B 122, 133 (2005)

    Article  CAS  Google Scholar 

  26. W. Mönch, Barrier heights of real Schottky contacts explained by metal-induced gap states and lateral inhomogeneities. J. Vac. Sci. Technol., B: Nanotechnol. Microelectron. Mater., Process., Meas., Phenom. 17, 1867 (1999)

    Article  Google Scholar 

  27. R.F. Schmitsdorf, T.U. Kampen, W. Mönch, Explanation of the linear correlation between barrier heights and ideality factors of real metal-semiconductor contacts by laterally nonuniform Schottky barriers. J. Vac. Sci. Technol., B: Nanotechnol. Microelectron. Mater., Process., Meas., Phenom. 15, 1221 (1997)

    Article  CAS  Google Scholar 

  28. J.F. Felix, M. Aziz, D.L. da Cunha, K.F. Seidel, I.A. Hümmelgen, W.M. de Azevedo, E.F. da Silva Jr, D. Taylor, M. Henini, Investigation of deep-level defects in conductive polymer on n-type 4H- and 6H-silicon carbide substrates using I-V and deep level transient spectroscopy techniques. J Appl Phy 112, 014505 (2012)

    Article  CAS  Google Scholar 

  29. C. Van Nguyen, K. Potje-Kamloth, Electrical and NOx gas sensing properties of metallophthalocyanine-doped polypyrrole/silicon heterojunctions. Thin Solid Films 392, 113 (2001)

    Article  Google Scholar 

  30. E. Gur, S. Tuzemen, B. Kilic, C. Coskun, High-temperature Schottky diode characteristics of bulk ZnO. J Phy Condens Matt 19, 196206 (2007)

    Article  CAS  Google Scholar 

  31. G.S. Chung, K.S. Kim, F. Yakuphanoglu, Electrical characterization of Au/3C-SiC/n-Si/Al Schottky junction. J. Alloy. Compd. 507, 508 (2010)

    Article  CAS  Google Scholar 

  32. K. Bourenane, A. Keffous, G. Nezzal, A. Bourenane, Y. Boukennous, A. Boukezzata, Influence of thickness and porous structure of SiC layers on the electrical properties of Pt/SiC-pSi and Pd/SiC-pSi Schottky diodes for gas sensing purposes. Sens Actuators B 129, 612 (2008)

    Article  CAS  Google Scholar 

  33. F. Triendl, G. Pfusterschmied, C. Berger, S. Schwarz, W. Artner, U. Schmid, Ti/4H-SiC Schottky barrier modulation by ultrathin a-SiC: H interface layer. Thin Solid Films 721, 138539 (2021)

    Article  CAS  Google Scholar 

  34. F. Triendl, G. Pfusterschmied, G. Pobegen, J.P. Konrath, U. Schmid, Theoretical and experimental investigations of barrier height inhomogeneities in poly-Si/4H-SiC heterojunction diodes. Semicond. Sci. Technol 35, 115011 (2020)

    Article  CAS  Google Scholar 

  35. A. Ferhat Hamida, Z. Ouennoughi, A. Sellai, R. Weissand, H. Ryssel, Barrier inhomogeneities of tungsten Schottky diodes on 4H-SiC. Semicond Sci Technol 23, 045005 (2008)

    Article  CAS  Google Scholar 

  36. L. Magafas, Optical response study of the al=a-sic:h schottky diode for different substrate temperatures of the rf sputtered a-sic:h thin film. Act. Passive Electron. Compon. 26, 63 (2003)

    Article  Google Scholar 

  37. B.C Kim, Electrical characterization of Schottky barrier diodes on heteroepitaxial 3C-SiC grown on Si substrates, Doctoral dissertation, Purdue University, (2008).

  38. Z.J. Horvath, Comment on “Analysis of I-V measurements on CrSi2-Si Schottky structures in a wide temperature range.” Solid-State Electron. 39, 176 (1996)

    Article  CAS  Google Scholar 

  39. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Willey, New York, 1981)

    Google Scholar 

  40. N. Yildirim, K. Ejderha, A. Turut, On temperature-dependent experimental I-V and C-V data of Ni/n-GaN Schottky contacts. J Appl Phy 108, 114506 (2010)

    Article  CAS  Google Scholar 

  41. D. Dastan, A. Banpurkar, Solution processable sol–gel derived titania gate dielectric for organic field effect transistors. J. Mater. Sci.: Mater. Electron. 28, 3851 (2017)

    CAS  Google Scholar 

  42. D. Dastan, S.W. Gosavi, N.B. Chaure, Studies on electrical properties of hybrid polymeric gate dielectrics for field effect transistors. Macromol. Symp. 347, 81 (2015)

    Article  CAS  Google Scholar 

  43. D. Korucu, A. Turut, Temperature dependence of Schottky diode characteristics prepared with photolithography technique. Int. J. Electron. 101, 1595 (2014)

    Article  CAS  Google Scholar 

  44. W. Zhang, X. Zhu, L. Liang, P. Yin, P. Xie, D. Dastan, K. Sun, R. Fan, Z. Shi, Significantly enhanced dielectric permittivity and low loss in epoxy composites incorporating 3d W-WO 3/BaTiO 3 foams. J. Mater. Sci. 56, 4254 (2021)

    Article  CAS  Google Scholar 

  45. P. Yin, Z. Shi, L. Sun, P. Xie, D. Dastan, K. Sun, R. Fan, Improved breakdown strengths and energy storage properties of polyimide composites: the effect of internal interfaces of C/SiO2 hybrid nanoparticles. Polym. Compos. 42, 3000 (2021)

    Article  CAS  Google Scholar 

  46. X. Li, T.K.S. Wong, D. Yang, Structural and electronic properties of low dielectric constant carbon rich amorphous silicon carbide. Diam. Relat. Mater. 12, 963 (2003)

    Article  CAS  Google Scholar 

  47. S.H. Cho, D.J. Choi, The study of dielectric constant change of a-SiC: H films deposited by remote PECVD with low deposition temperatures. J. Korean Phys. Soc. 55, 1920 (2009)

    Article  CAS  Google Scholar 

  48. L.F. Marsal, J. Pallares, X. Correig, A. Orpella, D. Bardes, R. Alcubilla, Current transport mechanisms in n-type amorphous silicon–carbon on p-type crystalline silicon (aSi0:8C0:2:H/c-Si) heterojunction diodes. Semicond. Sci. Technol. 13, 1148 (1998)

    Article  CAS  Google Scholar 

  49. N. Akter, M.D. Abul Hossion, M. Hoq, S.M. Rana, M.D. Anzan-Uz-Zaman, M.D. Nasrul Haque Mia, M.D. Alamgir Kabir, Z.H. Mahmood, Electrical characterization and doping uniformity measurement during crystalline silicon solar cell fabrication using hot probe method. Eng Int 2, 38 (2014)

    Article  Google Scholar 

  50. B.W.C. Au, K.Y. Chan, Y.K. Sin, Z.N. Ng, Hot-point probe measurements of N-type and P-type ZnO films. Microelectron. Int. 34, 30 (2017)

    Article  Google Scholar 

  51. T. F. Sheikholeslami, Characterization of amorphous silicon carbide and its application to the contact barrier diode, Doctoral dissertation, University of Sherbrook Canada, (2008).

  52. W. Chikhaoui, Study of the physical mechanisms responsible for the malfunctions of heterostructure-based HEMTs AlGaN/GaN et AlInN/GaN, Doctoral dissertation, INSA Lyon, (2011).

  53. J. Fan, P.K. Chu, Silicon Carbide Nanostructures Fabrication, Structure, and Properties Engineering Materials and Processes ( Springer, Cham, 2014)

    Google Scholar 

  54. M. Toure, B. Berenguier, L. Ottaviani, M. Pasquinelli, O. Palais, P. Di Lauro, M. Portail, S. Chenot, T. Wood, D. Kobor, New 3C silicon carbide on silicon hetero-junction solar cells for UV collection enhancement. RS Online Procee Lib 1693, 168 (2014)

    Google Scholar 

  55. A.A. Lebedev, V.V. Kozlovski, M.E. Levinshtein, A.E. Ivanov, K.S. Davydovskaya, V.S. Yuferev, A.V. Zubov, Impact of high temperature electron irradiation on characteristics of power SiC Schottky diodes. Radiat Phy Chem 185, 109514 (2021)

    Article  CAS  Google Scholar 

  56. K.Y. Lee, C.F. Huang, W. Chen, M.A. Capano, The impact of surface morphology on C-and Si-face 4H-SiC Schottky barrier diodes. Physica B 401, 41 (2007)

    Article  CAS  Google Scholar 

  57. N.M. Abd-Alghafour, N.M. Ahmed, Z. Hassan, Fabrication and characterization of V2O5 nanorods basedmetal–semiconductor–metal photodetector. Sens Actuators A 250, 250 (2016)

    Article  CAS  Google Scholar 

  58. D. Dastan, Nanostructured anatase titania thin films prepared by sol-gel dip coating technique. J Atomic Mol Condensed Matter and Nano Phy 2, 109 (2015)

    Google Scholar 

  59. D. Dastan, P.U. Londhe, N.B. Chaure, Characterization of TiO2 nanoparticles prepared using different surfactants by sol–gel method. J. Mater. Sci. Mater. Electron. 25, 3473 (2014)

    Article  CAS  Google Scholar 

  60. D. Dastan, N.B. Chaure, Influence of surfactants on TiO2 nanoparticles grown by sol-gel technique. J. Mater. Mech. Manufact 2, 21 (2014)

    CAS  Google Scholar 

  61. F.R. Juang, Y.K. Fang, Y.T. Chiang, T.H. Chou, C.I. Lin, A high-performance n-i-p sicn homojunction for low-cost and high-temperature ultraviolet detecting applications. IEEE Sens. J. 11, 150 (2011)

    Article  CAS  Google Scholar 

  62. W.R. Chang, Y.K. Fang, S.F. Ting, Y.S. Tsair, C.N. Chang, C.Y. Lin, S.F. Chen, The hetero-epitaxial SiCN/Si MSM photodetector for high-temperature deep-UV detecting applications. IEEE Electron Device Lett. 24, 565 (2003)

    Article  CAS  Google Scholar 

  63. S. Nishikawa, H. Hashimoto, M. Chikamoto, K. Horikoshi, M. Aoki, K. Arima, J. Uchikosi, M. Morita, Photo current through SnO2/SiC/p-Si(100) structures. Thin Solid Films 508, 385 (2006)

    Article  CAS  Google Scholar 

  64. A. Aldalbahi, E. Li, M. Rivera, R. Velazquez, T. Altalhi, X. Peng, P.X. Feng, A new approach for fabrications of SiC based photodetectors. Sci. Rep. 6, 23457 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Barbouche.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbouche, M., Benabderrahmane Zaghouani, R., Ben Ammar, N.E. et al. Effect of amorphous SiC layer on electrical and optical properties of Al/a-SiC/c-Si Schottky diode for optoelectronic applications. J Mater Sci: Mater Electron 32, 20598–20611 (2021). https://doi.org/10.1007/s10854-021-06570-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06570-6

Navigation