Skip to main content
Log in

Study on modulating the indium composition in InGaN quantum wells to improve the luminous efficiency of GaN LED

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study primarily used metal-organic chemical vapor deposition to grow gallium nitride (GaN) light-emitting diode (LED) structures with InGaN quantum wells (QWs). During the InGaN QW growing process, an identical concentration of trimethylindium gas was prepared and introduced at different times (Before(B), Middle(M), and After(A)) into the QW structures for an investigation of the variation in GaN LED luminous efficacy. Because of segregation resulting from the different concentrations of In content of the InGaN QWs during the process and because of the stress resulting from lattice mismatch between atoms, the interaction between segregation and stress forms quantum dots (QDs). Under processes with the appropriate parameters, the QDs can improve the luminous efficacy of GaN LEDs. Postprocess LEDs were measured for their electroluminescence, photoluminescence, cathodoluminescence, thermal stability, light output power, and external quantum efficiency. The QW structures were analyzed and observed using high-resolution transmission electron microscopy. The results revealed that the Before (B) LED had the greatest light output power at 46.6 mW, an increase of approximately 15.6%. Thermal annealing was then used to treat the LED at 850 °C, after which the photoluminescence intensity increased by 1.7 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.H. Kim, M.F. Schubert, Q. Dai, J.K. Kim, E.F. Schubert, J. Piprek, Y. Park, Appl. Phys. Lett. 91, 183507 (2007)

    Article  Google Scholar 

  2. Y. Yang, X.A. Cao, C.H. Yan, Appl. Phys. Lett. 94, 041117 (2009)

    Article  Google Scholar 

  3. H. Masui, H. Kroemer, M.C. Schmidt, K.C. Kim, N.N. Fellows, S. Nakamura, S.P. DenBaars, J. Phys. D: Appl. Phys. 41, 082001 (2008)

    Article  Google Scholar 

  4. Y.S. Lin, K.J. Ma, C. Hsu, S.W. Feng, Y.C. Cheng, C.C. Liao, C.C. Yang, C.C. Chou, C.M. Lee, J.I. Chyi, Appl. Phys. Lett. 77, 2988 (2000)

    Article  CAS  Google Scholar 

  5. Y.L. Lai, C.P. Liu, Z.Q. Chen, Appl. Phys. Lett. 86, 121915 (2005)

    Article  Google Scholar 

  6. T.T. Luong, Y.T. Ho, Y.Y. Wong, S. Chang, E.-Y. Chang, Microelectron. Reliab. 83, 286–292 (2018)

    Article  CAS  Google Scholar 

  7. T.Aggerstam, S.Lourdudoss, H.H.Radamson, M.Sjödin, P. Lorenzini, D.C. Look, Thin Solid Films 515, 705–707 (2006)

    Article  Google Scholar 

  8. W. Zhang, J. Zhang, M. Xiao, L. Zhang, Y. Hao, J. Electron Dev. Soc. 6, 931–935 (2018)

    Article  CAS  Google Scholar 

  9. R. Hu, X. Luo, S. Liu, IEEE Photonics Technol. Lett. 23, 1673–1675 (2011)

    Article  Google Scholar 

  10. K. Jong Kyu, L. Hong, S. Eric Fred, C. Jaehee, S. Cheolsoo, P. Yongjo, Jpn. J. Appl. Phys. 44, L649 (2005)

    Article  Google Scholar 

  11. K.S. Kim, D.P. Han, H.S. Kim, J.I. Shim, Appl. Phys. Lett. 104(9), ,091110 (2014)

    Article  Google Scholar 

  12. L. Wenbin, W. Lai, W. Jiaxing, X. Yuchen, Z. Jiyuan, Y. Di, H. Zhibiao, L. Yi, Jpn. J. Appl. Phys. 52, 08JG13 (2013)

    Article  Google Scholar 

  13. H. Hirayama, K. Matsunga, M. Asada, Y. Suematsu, Electro. Letter. 30, 142 (1994)

    Article  CAS  Google Scholar 

  14. S.C. Tsai, H.C. Fang, C.H. Lu, Y.L. Lai, C.P. Liu, J. Disp. Technol. 12, 869–872 (2016)

    Article  CAS  Google Scholar 

  15. P.-M. Tu, C.-Y. Chang, S.-C. Huang, C.-H. Chiu, J.-R. Chang, W.-T. Chang, D.-S. Wuu, H.-W. Zan, C.-C. Lin, H.-C. Kuo, C.-P. Hsu, Appl. Phys. Lett. 98(2011)

    Article  Google Scholar 

  16. D.J. Eaglesham, M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990)

    Article  CAS  Google Scholar 

  17. A.G. Thompson, Mater. Lett. 30, 255 (1997)

    Article  CAS  Google Scholar 

  18. Y. Yang, L. Zhang, T. Wei, Y. Zeng, J. Disp. Technol. 11, 456–460 (2015)

    Article  CAS  Google Scholar 

  19. Z. Li, J. Kang, B. Wei Wang, H. Li, Y. Hsiang Weng, Y.-C. Lee, Z. Liu, X. Yi, Z. Chuan Feng, G. Wang, J. Appl. Phys. 115, 083112 (2014)

    Article  Google Scholar 

  20. S. Karpov, Opt. Quant. Electron. 47, 1293–1303 (2015)

    Article  CAS  Google Scholar 

  21. N.A. Shapiro, H. Feick, W. Hong, M. Cich, R. Armitage, E.R. Weber, J. Appl. Phys. 94, 4520–4529 (2003)

    Article  CAS  Google Scholar 

  22. S. Figge, C. Tessarek, T. Aschenbrenner, D. Hommel, Physica Status Solidi 248, 1765–1776 (2011)

    Article  CAS  Google Scholar 

  23. A. Khan, K. Balakrishnan, Comp. Semicond. Sci. Technol. 1, 1–27 (2011)

    Google Scholar 

  24. Y.K. Su, Comp. Semicond. Sci. Technol. 1, 28–100 (2011)

    Article  Google Scholar 

  25. H.-C. Kuo, C.-W. Hung, H.-C. Chen, K.-J. Chen, C.-H. Wang, C.-W. Sher, C.-C. Yeh, C.-C. Lin, C.-H. Chen, Y.-J. Cheng, Opt. Express 19, A930–A936 (2011)

    Article  CAS  Google Scholar 

  26. M. Zhang, P. Bhattacharya, W. Guo, Appl. Phys. Lett. 97, 011103 (2010)

    Article  Google Scholar 

  27. W. Liu, D.G. Zhao, D.S. Jiang, P. Chen, Z.S. Liu, J.J. Zhu, M. Shi, D.M. Zhao, X. Li, J.P. Liu, S.M. Zhang, H. Wang, H. Yang, J. Alloy. Compd. 625, 266–270 (2015)

    Article  CAS  Google Scholar 

  28. L. Wenbin, W. Lai, W. Lei, X. Yuchen, Y. Di, H. Zhibiao, L. Yi, Appl. Phys. Express 7, 025203 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported as a project of the I-Shou University, Taiwan R.O.C. under grants ISU110-01-03 A, and the Ministry of Science and Technology, Taiwan R.O.C., under Grant MOST106-2918-I-214-001, MOST106-2221-E-214-036 and MOST108-2221-E-214-028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yen-Sheng Lin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, SH., Lin, YS., Tseng, WC. et al. Study on modulating the indium composition in InGaN quantum wells to improve the luminous efficiency of GaN LED. J Mater Sci: Mater Electron 32, 20965–20972 (2021). https://doi.org/10.1007/s10854-021-06516-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06516-y

Navigation